Simultaneous Determination of Acrylamide, Caffeic Acid, and Caffeine in Commercial Coffee Capsules Using a Rapid and Validated HPLC-DAD Approach

Wassila Belkhiri-Beder (1) , Lamia Taouzinet (2) , Zahra Toutou (3) , Khodir Madani (4) , Sofiane Fatmi (5)
(1) Université de Bejaia, Faculty of Technology, Department of Process Engineering. Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, 06000 Bejaia , Algeria
(2) Centre de Recherche en Technologies Agro-Alimentaires, Route de Targa Ouzemmour, Campus Universitaire, 06000 Bejaia , Algeria
(3) Université de Bejaia, Faculty of Nature and Life Sciences, Associated Laboratory in Marine Ecosystems and Aquaculture, LMPA Laboratory. 06000 Bejaia , Algeria
(4) Université de Bejaia Faculté des Sciences de la Nature et de la Vie Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, 06000 , Algeria
(5) Faculty of Technology Department of Process Engineering, Associated Laboratory in Marine Ecosystems and Aquaculture. 06000 Bejaia , Algeria

Abstract

Background: Coffee capsules are increasingly consumed worldwide and represent a complex source of bioactive compounds, notably caffeine (stimulant), caffeic acid (antioxidant), and acrylamide (toxicant).


Aims: The objectives of this investigation were twofold: (i) assess total phenolic content (TPC), antioxidant capacity, pH, and browning index, across seven commercial capsule products (comprising six Algerian brands widely consumed locally and one European comparator with undisclosed blend/roast); and (ii) to develop and validate an HPLC – Diode Array Detection (DAD) procedure for the simultaneous determination of caffeine, caffeic acid, and acrylamide , serving as joint indicators of product quality and safety.


Methods: The TPC was determined employing the Folin–Ciocalteu method, while antioxidant activity was assessed by the DPPH radical scavenging assay. The simultaneous quantification of caffeine, caffeic acid, and acrylamide were performed by a validated HPLC – DAD procedure in accordance with International Council for Harmonization (ICH) guidelines.


Results: The resulting coffee brews exhibited pH values ranging from 5.64 to 6.25 and browning indices between 0.280 and 0.482, reflecting roasting differences. Despite a modest TPC (0.9 to 2 mg GAE/g), the antioxidant activity was high, (up to 95.3% inhibition DPPH). Caffeine was consistently detected (0.05 – 0.33 mg/25 mL), confirming its stimulant role. Caffeic acid was present in lower concentrations (0.001 – 0.14 mg/25 mL), contributed to the antioxidant potential. In contrast, acrylamide was detected in all analyzed samples ranging from 4.75 to 28.15 µg/25 mL). On a dry coffee basis, these concentrations correspond to 458 – 4023 µg/kg. A majority of the capsules yielded levels that exceed the European Commission’s benchmark of 400 µg/kg for roasted coffee, thereby underscoring consumer-relevant exposure level and raising toxicological concern.


Conclusions: Coffee capsule brews demonstrated notable antioxidant capacity despite modest TPC, with caffeine ubiquitous and caffeic acid detectable. The presence of acrylamide was confirmed in all samples at levels that warrant monitoring. The validated HPLC–DAD workflow enables the simultaneous determination of these markers and offers a robust basis for integrated quality control and risk assessment in encapsulated coffee products.


Keywords: Coffee capsule; Antioxidant activity; High-Performance Liquid Chromatography (HPLC); Caffeic acid; Caffeine; Acrylamide.

Full text article

Generated from XML file

References

Bartel, C., Mesias, M., & Morales, F. J. (2015). Investigation on the extractability of melanoidins in portioned espresso coffee. Food Research International (Ottawa, Ont.), 67, 356–365. https://doi.org/10.1016/j.foodres.2014.11.053
Beder-Belkhiri, W., Zeghichi-Hamri, S., Kadri, N., Boulekbache-Makhlouf, L., Cardoso, S., Oukhmanou-Bensidhoum, S., & Madani, K. (2018). Hydroxycinnamic acids profiling, in vitro evaluation of total phenolic compounds, caffeine and antioxidant properties of coffee imported, roasted and consumed in Algeria. Mediterranean Journal of Nutrition and Metabolism, 11(1), 51–63. https://doi.org/10.3233/mnm-17181
Bekedam, E. K., Loots, M. J., Schols, H. A., Van Boekel, M. A. J. S., & Smit, G. (2008). Roasting effects on formation mechanisms of coffee brew melanoidins. Journal of Agricultural and Food Chemistry, 56(16), 7138–7145. https://doi.org/10.1021/jf800999a
Bekedam, E. K., Schols, H. A., van Boekel, M. A. J. S., & Smit, G. (2006). High molecular weight melanoidins from coffee brew. Journal of Agricultural and Food Chemistry, 54(20), 7658–7666. https://doi.org/10.1021/jf0615449
Cämmerer, B., & Kroh, L. W. (2006). Antioxidant activity of coffee brews. European Food Research and Technology, 223(4), 469–474. https://doi.org/10.1007/s00217-005-0226-4
Caporaso, N., Genovese, A., Canela, M. D., Civitella, A., & Sacchi, R. (2014). Neapolitan coffee brew chemical analysis in comparison to espresso, moka and American brews. Food Research International (Ottawa, Ont.), 61, 152–160. https://doi.org/10.1016/j.foodres.2014.01.020
Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfurAL (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. Lebensmittel-Wissenschaft Und Technologie Food Science and Technology, 44(4), 793–810. https://doi.org/10.1016/j.lwt.2010.11.002
Clarke, R., & Vitzthum, O. G. (2001). Coffee: Recent developments (R. J. Clarke & O. G. Vitzthum, Eds.). Blackwell Science.
Clifford, M. N., Jaganath, I. B., Ludwig, I. A., & Crozier, A. (2017). Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Natural Product Reports, 34(12), 1391–1421. https://doi.org/10.1039/c7np00030h
Crozier, T. W. M., Stalmach, A., Lean, M. E. J., & Crozier, A. (2012). Espresso coffees, caffeine and chlorogenic acid intake: potential health implications. Food & Function, 3(1), 30–33. https://doi.org/10.1039/c1fo10240k
Del Castillo, M. D., Ames, J. M., & Gordon, M. H. (2002). Effect of roasting on the antioxidant activity of coffee brews. Journal of Agricultural and Food Chemistry, 50(13), 3698–3703. https://doi.org/10.1021/jf011702q
Dias, R., & Benassi, M. (2015). Discrimination between Arabica and Robusta coffees using hydrosoluble compounds: Is the efficiency of the parameters dependent on the roast degree? Beverages, 1(3), 127–139. https://doi.org/10.3390/beverages1030127
Echavarría, A. P., Pagán, J., & Ibarz, A. (2012). Melanoidins formed by Maillard reaction in food and their biological activity. Food Engineering Reviews, 4(4), 203–223. https://doi.org/10.1007/s12393-012-9057-9
EFSA Panel on Contaminants in the Food Chain (CONTAM). (2015). Scientific Opinion on acrylamide in food: Acrylamide in food. EFSA Journal, 13(6), 4104. https://doi.org/10.2903/j.efsa.2015.4104
Eiermann, A., Smrke, S., Guélat, L.-M., Wellinger, M., Rahn, A., & Yeretzian, C. (2020). Extraction of single serve coffee capsules: linking properties of ground coffee to extraction dynamics and cup quality. Scientific Reports, 10(1), 17079. https://doi.org/10.1038/s41598-020-74138-1
European Commission. (2017). Commission Regulation (EU) 2017/2158 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. EUR-Lex. https://eur-lex.europa.eu/eli/reg/2017/2158/oj
Farah, A. (2012). Coffee Constituents. In Coffee (pp. 21–58). Wiley Blackwell. https://onlinelibrary.wiley.com/doi/10.1002/9781119949893.ch2
Farah, A., de Paulis, T., Trugo, L. C., & Martin, P. R. (2005). Effect of roasting on the formation of chlorogenic acid lactones in coffee. Journal of Agricultural and Food Chemistry, 53(5), 1505–1513. https://doi.org/10.1021/jf048701t
Friedman, M. (2003). Chemistry, biochemistry, and safety of acrylamide: A review. Journal of Agricultural and Food Chemistry, 51(16), 4504–4526. https://doi.org/10.1021/jf030204
Ginz, M., & Engelhardt, U. H. (2000). Identification of proline-based diketopiperazines in roasted coffee. Journal of Agricultural and Food Chemistry, 48(8), 3528–3532. https://doi.org/10.1021/jf991256v
Hecimovic, I., Belščak-Cvitanović, A., Horžić, D., & Komes, D. (2011). Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry, 129(3), 991–1000. https://doi.org/10.1016/j.foodchem.2011.05.059
ICH. (2005). Validation of analytical procedures: Text and methodology Q2(R1). International Conference on Harmonisation. (EMA publication). https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf
ICH. (2023a). Q2(R2): Validation of analytical procedures. International Council for Harmonisation. https://database.ich.org/sites/default/files/ICH_Q2(R2)_Guideline_2023_1130.pdf
ICH. (2023b). Q14: Analytical procedure development. International Council for Harmonisation. https://database.ich.org/sites/default/files/ICH_Q14_Guideline_2023_1116_1.pdf
International Agency for Research on Cancer (IARC). (1994). Some industriAL chemicals (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 60). IARC. https://publications.iarc.who.int/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Industrial-Chemicals-1994 publications.iarc.who.int
Kocadağlı, T., & Gökmen, V. (2022). Formation of acrylamide in coffee. Current Opinion in Food Science, 45(100842), 100842. https://doi.org/10.1016/j.cofs.2022.100842
Lopes, G. L. N., Leal, L. H. de C., Nogueira, N. C., Da Costa, I. H. F., Ciríaco, S. L., & Carvalho, A. L. M. (2022). Development and application of analytical method for quantification of zinc pyrithione in shampoos by UV/VIS spectroscopy / Desenvolvimento e aplicação de método analítico para quantificação de piritionato de zinco em xampus por espectroscopia UV/Vis. Brazilian Journal of Health Review, 5(2), 6001–6011. https://doi.org/10.34119/bjhrv5n2-176
López-Galilea, I., Andueza, S., Leonardo, I. di, Paz de Peña, M., & Cid, C. (2006). Influence of torrefacto roast on antioxidant and pro-oxidant activity of coffee. Food Chemistry, 94(1), 75–80. https://doi.org/10.1016/j.foodchem.2004.10.052
Ludwig, I. A., Mena, P., Calani, L., Cid, C., Del Rio, D., Lean, M. E. J., & Crozier, A. (2014). Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food & Function, 5(8), 1718–1726. https://doi.org/10.1039/c4fo00290c
Ludwig, I. A., Sanchez, L., Caemmerer, B., Kroh, L. W., De Peña, M. P., & Cid, C. (2012). Extraction of coffee antioxidants: Impact of brewing time and method. Food Research International (Ottawa, Ont.), 48(1), 57–64. https://doi.org/10.1016/j.foodres.2012.02.023
McLellan, T. M., Caldwell, J. A., & Lieberman, H. R. (2016). A review of caffeine’s effects on cognitive, physical and occupational performance. Neuroscience and Biobehavioral Reviews, 71, 294–312. https://doi.org/10.1016/j.neubiorev.2016.09.001
Melliyanti, S. N., Afandi, F. A., Giriwono, P. E., & Herawati, D. (2023). A meta-analysis: the effects of types, roasting degrees and origins on antioxidant properties of coffee. International Journal of Food Science & Technology, 58(6), 2857–2865. https://doi.org/10.1111/ijfs.16431
Mishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130(4), 1036–1043. https://doi.org/10.1016/j.foodchem.2011.07.127
Monakhova, Y. B., Ruge, W., Kuballa, T., Ilse, M., Winkelmann, O., Diehl, B., Thomas, F., & Lachenmeier, D. W. (2015). Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy. Food Chemistry, 182, 178–184. https://doi.org/10.1016/j.foodchem.2015.02.132
Monteiro, M. C., & Farah, A. (2012). Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops. Food Chemistry, 134(1), 611–614. https://doi.org/10.1016/j.foodchem.2012.02.118
Moon, J.-K., Yoo, H. S., & Shibamoto, T. (2009). Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity. Journal of Agricultural and Food Chemistry, 57(12), 5365–5369. https://doi.org/10.1021/jf900012b
Moreira, A. S. P., Nunes, F. M., Domingues, M. R. M., & Coimbra, M. A. (2019). Coffee: Production, quality and chemistry (A. Farah, Ed.). Royal Society of Chemistry. https://doi.org/10.1039/9781782622437
Moreira, A. S. P., Nunes, F. M., Domingues, M. R., & Coimbra, M. A. (2012). Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food & Function, 3(9), 903–915. https://doi.org/10.1039/c2fo30048f
Narita, Y., & Inouye, K. (2013). Degradation kinetics of chlorogenic acid at various pH values and effects of ascorbic acid and epigallocatechin gallate on its stability under alkaline conditions. Journal of Agricultural and Food Chemistry, 61(4), 966–972. https://doi.org/10.1021/jf304105w
Nehlig, A. (2016). Effects of coffee/caffeine on brain health and disease: What should I tell my patients? Practical Neurology, 16(2), 89–95. https://doi.org/10.1136/practneurol-2015-001162
Pastoriza, S., Rufián-Henares, J. Á., & Morales, F. J. (2012). Reactivity of acrylamide with coffee melanoidins in model systems. Lebensmittel-Wissenschaft Und Technologie Food Science and Technology, 45(2), 198–203. https://doi.org/10.1016/j.lwt.2011.08.004
Perrone, D., Farah, A., & Donangelo, C. M. (2012). Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. Journal of Agricultural and Food Chemistry, 60(17), 4265–4275. https://doi.org/10.1021/jf205388x
Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276. https://doi.org/10.1002/(sici)1097-0010(199802)76:2<270::aid-jsfa945>3.3.co;2-0
Santana-Gálvez, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2017). Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules (Basel, Switzerland), 22(3), 358. https://doi.org/10.3390/molecules22030358
Schouten, M. A., Tappi, S., Angeloni, S., Cortese, M., Caprioli, G., Vittori, S., & Romani, S. (2021). Acrylamide formation and antioxidant activity in coffee during roasting - A systematic study. Food Chemistry, 343(128514), 128514. https://doi.org/10.1016/j.foodchem.2020.128514
Shrivastava, A., & Gupta, V. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2(1), 21. https://doi.org/10.4103/2229-5186.79345
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). 14 Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-Ciocalteu reagent. In Oxidants and Antioxidants Part A (pp. 152–178). Elsevier. https://doi.org/10.1016/S0076-6879(99)99017-1
Speer, K., & Kölling-Speer, I. (2006). The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology, 18(1), 201–216. https://doi.org/10.1590/s1677-04202006000100014
Strocchi, G., Rubiolo, P., Cordero, C., Bicchi, C., & Liberto, E. (2022). Acrylamide in coffee: What is known and what still needs to be explored. A review. Food Chemistry, 393(133406), 133406. https://doi.org/10.1016/j.foodchem.2022.133406
Tajik, N., Tajik, M., Mack, I., & Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European Journal of Nutrition, 56(7), 2215–2244. https://doi.org/10.1007/s00394-017-1379-1
Taouzinet, L., Fatmi, S., Salhi-Amrani, Y., Lahiani-Skiba, M., Skiba, M., & Iguer-Ouada, M. (2021). Development and Validation of HPLC method for simultaneous quantification of alpha‐tocopherol (free or encapsulated) and cholesterol in semen cryopreservation media. Biomedical Chromatography: BMC, 35(4). https://doi.org/10.1002/bmc.5018
Taverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method Validation and quality assurance. Trends in Analytical Chemistry: TRAC, 23(8), 535–552. https://doi.org/10.1016/j.trac.2004.04.001
Toutou, Z., Chibani, N., Taouzinet, L., Salhi-Amrani, Y., & Fatmi, S. (2022). Development and Validation of high-performance liquid chromatography assay method for simultaneous determination of caffeic acid, vanillin, and cinnamic acid in Algerian propolis extract. Biopolymer Applications Journal, 1(1), 32–39.
U.S. Food and Drug Administration. (2021). Q2(R1) Validation of analytical procedures: Text and methodology—Guidance for industry. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2r1-Validation-analytical-procedures-text-and-methodology-guidance-industry
Vezzulli, F., Triachini, S., Mulazzi, A., Lambri, M., & Bertuzzi, T. (2022). Acrylamide: impact of precursors concentration, origin, post‐harvesting process and roasting level in high‐quality arabica and Robusta coffee. International Journal of Food Science & Technology, 57(12), 7468–7476. https://doi.org/10.1111/ijfs.15900
Vignoli, J. A., Bassoli, D. G., & Benassi, M. T. (2011). Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chemistry, 124(3), 863–868. https://doi.org/10.1016/j.foodchem.2010.07.008
Vignoli, Josiane Alessandra, Viegas, M. C., Bassoli, D. G., & Benassi, M. de T. (2014). Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and Robusta coffees. Food Research International (Ottawa, Ont.), 61, 279–285. https://doi.org/10.1016/j.foodres.2013.06.006
Yeager, S. E., Batali, M. E., Guinard, J.-X., & Ristenpart, W. D. (2023). Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Critical Reviews in Food Science and Nutrition, 63(8), 1010–1036. https://doi.org/10.1080/10408398.2021.1957767

Authors

Wassila Belkhiri-Beder
Lamia Taouzinet
lamia.taouzinet@crtaa.univ-bejaia.dz (Primary Contact)
Zahra Toutou
Khodir Madani
Sofiane Fatmi
Belkhiri-Beder, W. ., Taouzinet, L. ., Toutou, Z., Madani, K. ., & Fatmi, S. . (2025). Simultaneous Determination of Acrylamide, Caffeic Acid, and Caffeine in Commercial Coffee Capsules Using a Rapid and Validated HPLC-DAD Approach. The North African Journal of Food and Nutrition Research, 9(20), 298–309. https://doi.org/10.51745/najfnr.9.20.298-309

Article Details

Received 2025-06-16
Accepted 2025-11-04
Published 2025-12-09

Most read articles by the same author(s)

1 2 > >>