Screening of Five Lactobacillus Bacteria with Probiotic Properties from Indigenous Klila Cheese

Ahmed Saci (1) , Samia Gharbi (2) , Fatima Djadouni (3) , Noureddine Karkachi (4)
(1) Faculty of Life and Natural Science/Department of Biology. University of Oran 1 Ahmed Ben Bella, Oran. 31100 , Algeria
(2) Faculty of Life and Natural Science/ Department of Biotechnology. University of Science and Technology of Oran Mohamed Boudiaf, Oran. 31000 , Algeria
(3) Faculty of Life and Natural Science/Department of Biology. University Mustapha Stambouli of Mascara (UMSM). Mascara 29000, Algeria. Laboratory of Applied Microbiology, University of Oran 1 Ahmed Ben Bella, Oran 31100 , Algeria
(4) Laboratory of Applied Microbiology, Faculty of Life and Natural Science/Department of Biology. University of Oran 1 Ahmed Ben Bella, Oran. 31100 , Algeria

Abstract

Background: The Lactobacillus genus is the most widespread lactic acid bacteria (LAB) species globally. These bacteria are known for their probiotic properties, which benefit human health.


Aims: This study aims to identify and screen the principal probiotic selection criteria of five Lactobacillus strains isolated from Klila, a traditionally fermented cheese product from Algeria, in vitro.


Materials and Methods: The main probiotic selection criteria were screened in vitro through biochemical and physiological tests, such as tolerance to low pH, bile salts, and phenol, their aggregation capacity, cell surface hydrophobicity, antibiotic sensitivity, and antimicrobial activity. Sequencing the 16S-rRNA gene identified the five isolates as Lactobacillus plantarum (LP1, LP2, LP3, and LP4) and Lactobacillus fermentum (LF1).


Results: The experimental results showed that all five isolates survived after exposure to low pH (2.2) for 3 hours. They also showed tolerance to bile salts ranging from 57.67 to 70.68% and 0.4% phenol, ranging from 39.22 to 61.01%. The auto-aggregation capacity varied between 31.35% and 57.38%, while co-aggregation varied respectively from 14.57% to 22.17% with Escherichia coli, from 13.04% to 23.62% with Staphylococcus aureus, and from 11.15% to 17.03% with Candida albicans. The hydrophobicity towards xylene ranged from 41.67 to 60.47%, and the biofilm formation ability ranged from 32.94 to 70.19%. Isolate LF1 presented the highest hydrophobicity and biofilm formation percentages, with 60.47 and 70.19%, respectively. All five isolates demonstrated significant antioxidant capacities, suggesting their potential to improve food preservation and health benefits. Exceptional antimicrobial activities were revealed against the tested food-borne pathogens, ranging from 12.6 to 45 mm. A safety profile was shown without hemolytic, gelatin liquefaction, or coagulase activity.


Conclusion: The Lactobacillus bacteria isolated from Klila presented physiological characteristics that make them potential probiotic candidates beneficial for health.


Keywords: Lactobacillus; Lactic Acid Bacteria; Probiotic Potential; Antimicrobial Activity; Traditional Algerian Cheese.

Full text article

Generated from XML file

References

Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N. P., & Ayyash, M. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT-Food Science and Technology, 79, 316–325. https://doi.org/10.1016/j.lwt.2017.01.041
Akman, P. K., Ozulku, G., Tornuk, F., & Yetim, H. (2021). Potential probiotic lactic acid bacteria isolated from fermented gilaburu and shalgam beverages. LWT, 149, 111705. https://doi.org/10.1016/j.lwt.2021.111705
Amenu, D., & Bacha, K. (2023). Probiotic potential and safety analysis of lactic acid bacteria isolated from Ethiopian traditional fermented foods and beverages. Annals of Microbiology, 73(1), 37. https://doi.org/10.1186/s13213-023-01740-9
Angmo, K., Kumari, A., Savitri, & Bhalla, T. C. (2016). Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT - Food Science and Technology, 66, 428–435. https://doi.org/10.1016/j.lwt.2015.10.057
Atanasov, N., Evstatieva, Y., & Nikolova, D. (2023). Antagonistic Interactions of Lactic Acid Bacteria from Human Oral Microbiome against Streptococcus mutans and Candida albicans. Microorganisms, 11(6), 1604. https://doi.org/10.3390/microorganisms11061604
Azevedo, I., Barbosa, J., Albano, H., Nogueira, T., & Teixeira, P. (2024). Lactic Acid Bacteria isolated from traditional and innovative alheiras as potential biocontrol agents. Food Microbiology, 119, 104450. https://doi.org/10.1016/j.fm.2023.104450
Aziz, G., Fakhar, H., Rahman, S. U., Tariq, M., & Zaidi, A. (2019). An assessment of the aggregation and probiotic characteristics of Lactobacillus species isolated from native (desi) chicken gut. Journal of Applied Poultry Research, 28(4), 846–857. https://doi.org/10.3382/japr/pfz042
Balcázar, J. L., Subirats, J., & Borrego, C. M. (2015). The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01216
Bao, Y., Zhang, Y., Zhang, Y., Liu, Y., Wang, S., Dong, X., Wang, Y., & Zhang, H. (2010). Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control, 21(5), 695–701. https://doi.org/10.1016/j.foodcont.2009.10.010
Basbülbül, G., Özteber, M., & Biyik, H. H. (2015). Antibiotic resistance in lactic acid bacteria isolated from fermented dairy products and boza. The Journal of Microbiology, Biotechnology and Food Sciences, 4(6), 513. https://doi: 10.15414/jmbfs.2015.4.6.513-517
Benamara, R. N., Benahmed, M., Ibri, K., Moussa Boudjemaa, B., & Demarigny, Y. (2022). Algerian extra hard cheese of Klila: A review on the production method, and microbial, organoleptic, and nutritional properties. Journal of Ethnic Foods, 9(1), 41. https://doi.org/10.1186/s42779-022-00157-0
Botta, C., Langerholc, T., Cencič, A., & Cocolin, L. (2014). In Vitro Selection and Characterization of New Probiotic Candidates from Table Olive Microbiota. PloS One, 9(4), e94457. https://doi.org/10.1371/journal.pone.0094457
Bujnakova, D., & Kmet, V. (2002). Aggregation of Animal Lactobacilli with O157 Enterohemorrhagic Escherichia coli. Journal of Veterinary Medicine, Series B, 49(3), 152–154. https://doi.org/10.1046/j.1439-0450.2002.00526.x
Choi, A.-R., Patra, J. K., Kim, W. J., & Kang, S.-S. (2018). Antagonistic Activities and Probiotic Potential of Lactic Acid Bacteria Derived From a Plant-Based Fermented Food. Frontiers in Microbiology, 9, 1963. https://doi.org/10.3389/fmicb.2018.01963
Clementi, F., & Aquilanti, L. (2011). Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. Anaerobe, 17(6), 394–398. https://doi.org/10.1016/j.anaerobe.2011.03.021
CLSI. (2020). M100-Performance Standards for Antimicrobial Susceptibility Testing (Version 30th ed). www.clsi.org
Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226(5), 1065–1073. https://doi.org/10.1007/s00217-007-0632-x
De Almeida Júnior, W. L. G., Ferrari, Í. da S., de Souza, J. V., da Silva, C. D. A., da Costa, M. M., & Dias, F. S. (2015). Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control, 53, 96–103. https://doi.org/10.1016/j.foodcont.2015.01.013
Dela Cruz, T. E. E., & Torres, J. M. O. (2012). Gelatin hydrolysis test protocol. Am Soc Microbiol. https://asm.org/ASM/media/Protocol-Images/Gelatin-Hydrolysis-Test-Protocol.pdf?ext=.pdf/1000
Dempsey, E., & Corr, S. C. (2022). Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.840245
Divyashree, S., Ramu, R., & Sreenivasa, M. Y. (2024). Evaluation of new candidate probiotic lactobacillus strains isolated from a traditional fermented food- multigrain-millet dosa batter. Food Bioscience, 57, 103450. https://doi.org/10.1016/j.fbio.2023.103450
Djordjevic, D., Wiedmann, M., & McLandsborough, L. A. (2002). Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation. Applied and Environmental Microbiology, 68(6), 2950–2958. https://doi.org/10.1128/AEM.68.6.2950-2958.2002
Doukaki, A., Papadopoulou, O. S., Baraki, A., Siapka, M., Ntalakas, I., Tzoumkas, I., Papadimitriou, K., Tassou, C., Skandamis, P., Nychas, G.-J., & Chorianopoulos, N. (2024). Effect of the Bioprotective Properties of Lactic Acid Bacteria Strains on Quality and Safety of Feta Cheese Stored under Different Conditions. Microorganisms, 12(9), 1870. https://doi.org/10.3390/microorganisms12091870
Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17(19), 7843–7853. https://doi.org/10.1093/nar/17.19.7843
Elafify, M., Liao, X., Feng, J., Ahn, J., & Ding, T. (2024). Biofilm formation in food industries: Challenges and control strategies for food safety. Food Research International, 190, 114650. https://doi.org/10.1016/j.foodres.2024.114650
Fayemi, O. E., Akanni, G. B., Sobowale, S. S., Oelofse, A., & Buys, E. M. (2023). Potential for increasing folate contents of traditional African fermented sorghum gruel (Motoho) using presumptive probiotic lactic acid bacteria. Journal of Food Composition and Analysis, 115, 104850. https://doi.org/10.1016/j.jfca.2022.104850
Gómez, N. C., Ramiro, J. M. P., Quecan, B. X. V., & De Melo Franco, B. D. G. (2016). Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00863
Guan, C., Chen, X., Jiang, X., Zhao, R., Yuan, Y., Chen, D., Zhang, C., Lu, M., Lu, Z., & Gu, R. (2020). In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Advances, 10(41), 24234–24240. https://doi.org/10.1039/D0RA03517C
Hadef, S., Idoui, T., Sifour, M., Genay, M., & Dary-Mourot, A. (2023). Screening of Wild Lactic Acid Bacteria from Algerian Traditional Cheeses and Goat Butter to Develop a New Probiotic Starter Culture. Probiotics and Antimicrobial Proteins, 15(2), 387–399. https://doi.org/10.1007/s12602-022-10000-2
Hanchi, H., Sebei, K., Mottawea, W., Al Kasaa, I., & Hammami, R. (2022). An agar-based bioassay for accurate screening of the total antioxidant capacity of lactic acid bacteria cell-free supernatants. Journal of Microbiological Methods, 195, 106437. https://doi.org/10.1016/j.mimet.2022.106437
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15(1), 1–23.
Huligere, S. S., Chandana Kumari, V. B., Alqadi, T., Kumar, S., Cull, C. A., Amachawadi, R. G., & Ramu, R. (2023). Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Frontiers in Microbiology, 13, 1042263. https://doi.org/ 10.3389/fmicb.2022.1042263
Ibrahim, S. A. (2016). Lactic Acid Bacteria: Lactobacillus spp.: Other Species. In Reference Module in Food Science (p. B978008100596500857X). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.00857-X
Jena, P. K., Trivedi, D., Thakore, K., Chaudhary, H., Giri, S. S., & Seshadri, S. (2013). Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota. Microbiology and Immunology, 57(6), 407–416. https://doi.org/10.1111/1348-0421.12054
Jin, Y., Luo, B., Cai, J., Yang, B., Zhang, Y., Tian, F., & Ni, Y. (2021). Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. Journal of Dairy Science, 104(5), 5166–5184. https://doi.org/10.3168/jds.2020-19398
Krausova, G., Hyrslova, I., & Hynstova, I. (2019). In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation, 5(4), 100. https://doi.org/10.3390/fermentation5040100
Lee, S.-J., Jeon, H.-S., Yoo, J.-Y., & Kim, J.-H. (2021). Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods, 10(9), 2148. https://doi.org/10.3390/foods10092148
Leksir, C., Boudalia, S., Moujahed, N., & Chemmam, M. (2019). Traditional dairy products in Algeria: Case of Klila cheese. Journal of Ethnic Foods, 6(1), 7. https://doi.org/10.1186/s42779-019-0008-4
Leonardo, C. C., & Pennypacker, K. R. (2009). Neuroinflammation and MMPs: Potential therapeutic targets in neonatal hypoxic-ischemic injury. Journal of Neuroinflammation, 6(1), 13. https://doi.org/10.1186/1742-2094-6-13
Leska, A., Nowak, A., & Czarnecka-Chrebelska, K. H. (2022). Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee (Apis mellifera L.) Pathogens. Molecules, 27(24), 8945. https://doi.org/10.3390/molecules27248945
Li, M., Wang, Y., Cui, H., Li, Y., Sun, Y., & Qiu, H.-J. (2020). Characterization of Lactic Acid Bacteria Isolated From the Gastrointestinal Tract of a Wild Boar as Potential Probiotics. Frontiers in Veterinary Science, 7, 49. https://doi.org/10.3389/fvets.2020.00049
Limsowtin, G. K. Y., Broome, M. C., & Powell, I. B. (2002). Lactic acid bacteria, taxonomy. In Encyclopedia of Dairy Sciences (pp. 1470–1478). Elsevier.
Menconi, A., Kallapura, G., Latorre, J. D., Morgan, M. J., Pumford, N. R., Hargis, B. M., & Tellez, G. (2014). Identification and Characterization of Lactic Acid Bacteria in a Commercial Probiotic Culture. Bioscience of Microbiota, Food and Health, 33(1), 25–30. https://doi.org/10.12938/bmfh.33.25
Meradji, M., Bachtarzi, N., Mora, D., & Kharroub, K. (2023). Characterization of Lactic Acid Bacteria Strains Isolated from Algerian Honeybee and Honey and Exploration of Their Potential Probiotic and Functional Features for Human Use. Foods, 12(12), 2312. https://doi.org/10.3390/foods12122312
Mgomi, F. C., Yang, Y., Cheng, G., & Yang, Z. (2023). Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm, 5, 100118. https://doi.org/10.1016/j.bioflm.2023.100118
Nami, Y., Vaseghi Bakhshayesh, R., Mohammadzadeh Jalaly, H., Lotfi, H., Eslami, S., & Hejazi, M. A. (2019). Probiotic Properties of Enterococcus Isolated From Artisanal Dairy Products. Frontiers in Microbiology, 10, 300. https://doi.org/10.3389/fmicb.2019.00300
Nandha, M. C., & Shukla, R. M. (2023). Exploration of probiotic attributes in lactic acid bacteria isolated from fermented Theobroma cacao L. fruit using in vitro techniques. Frontiers in Microbiology, 14, 1274636. https://doi.org/10.3389/fmicb.2023.1274636
O’Sullivan, D. J., & Klaenhammer, T. R. (1993). Rapid Mini-Prep Isolation of High-Quality Plasmid DNA from Lactococcus and Lactobacillus spp. Applied and Environmental Microbiology, 59(8), 2730–2733. https://doi.org/10.1128/aem.59.8.2730-2733.1993
Paul, C., Mishu, I. D., Miah, M. I., Bari, M. L., Rahman, S. R., & Malek, M. A. (2023). Isolation, identification and probiotic potential of lactic acid bacteria and yeas ts from commercial yogurt and homemade non-dairy fermented food “KANJI.” International Journal of Gastronomy and Food Science, 34, 100787. https://doi.org/10.1016/j.ijgfs.2023.100787
Pieniz, S., Andreazza, R., Anghinoni, T., Camargo, F., & Brandelli, A. (2014). Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control, 37, 251–256. https://doi.org/10.1016/j.foodcont.2013.09.055
Razmi, N., Lazouskaya, M., Pajcin, I., Petrovic, B., Grahovac, J., Simic, M., Willander, M., Nur, O., & Stojanovic, G. M. (2023). Monitoring the effect of pH on the growth of pathogenic bacteria using electrical impedance spectroscopy. Results in Engineering, 20, 101425. https://doi.org/10.1016/j.rineng.2023.101425
Ruiz-Ramírez, Y., Valadez-Blanco, R., Calderón-García, C., Chikindas, M. L., & Ponce-Alquicira, E. (2023). Probiotic and functional potential of lactic acid bacteria isolated from pulque and evaluation of their safety for food applications. Frontiers in Microbiology, 14, 1241581. https://doi.org/10.3389/fmicb.2023.1241581
Sengun, I. Y., Yalcin, H. T., Kilic, G., Ozturk, B., Peker, A. K., Terzi, Y., & Atlama, K. (2024). Identification of lactic acid bacteria found in traditional Shalgam juice using 16S rRNA sequencing and evaluation of their probiotic potential in vitro. Food Bioscience, 60, 104300. https://doi.org/10.1016/j.fbio.2024.104300
Shaaban, M., Abd El-Rahman, O. A., Al-Qaidi, B., & Ashour, H. M. (2020). Antimicrobial and Antibiofilm Activities of Probiotic Lactobacilli on Antibiotic-Resistant Proteus mirabilis. Microorganisms, 8(6), 960. https://doi.org/10.3390/microorganisms8060960
Shehata, M. G., Masry, S. H. D., Abd El-Aziz, N. M., Ridouane, F. L., Mirza, S. B., & El-Sohaimy, S. A. (2024). Probiotic potential of lactic acid bacteria isolated from honeybees stomach: Functional and technological insights. Annals of Agricultural Sciences, 69(1), 11–18. https://doi.org/10.1016/j.aoas.2024.06.001
Shi, L. H., Balakrishnan, K., Thiagarajah, K., Mohd Ismail, N. I., & Yin, O. S. (2016). Beneficial Properties of Probiotics. Tropical Life Sciences Research, 27(2), 73–90. https://doi.org/10.21315/tlsr2016.27.2.6
Soda, M., Ahmed, N., Omran, N., Osman, G., & Morsi, A. (2003). Isolation, identification and selection of lactic acid bacteria cultures for cheesemaking. Emirates Journal of Food and Agriculture, 15(2), 51. https://doi.org/10.9755/ejfa.v15i2.5006
Tavakoli, M., Hamidi-Esfahani, Z., Hejazi, M., Azizi, M., & Abbasi, S. (2017). Characterization of Probiotic Abilities of Lactobacilli Isolated from Iranian Koozeh Traditional Cheese. Polish Journal of Food and Nutrition Sciences, 67(1), 41–48. https://doi.org/10.1515/pjfns-2016-0003
Vijayakumar, M., Ilavenil, S., Kim, D. H., Arasu, M. V., Priya, K., & Choi, K. C. (2015). In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass ( Lolium multiflorum ) forage. Anaerobe, 32, 90–97. https://doi.org/10.1016/j.anaerobe.2015.01.003
Xanthopoulos, V., Litopoulou-Tzanetaki, E., & Tzanetakis, N. (2000). Characterization of Lactobacillus isolates from infant faeces as dietary adjuncts. FoodMicrobiology, 17(2), 205–215. https://doi.org/10.1006/fmic.1999.0300
Yang, C., & Yu, T. (2019). Characterization and transfer of antimicrobial resistance in lactic acid bacteria from fermented dairy products in China. The Journal of Infection in Developing Countries, 13(02), 137–148. https://doi.org/10.3855/jidc.10765
Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of Food Science and Technology, 56(11), 4757–4774. https://doi.org/10.1007/s13197-019-03952-x
Zhou, Y., Zhang, M., & Liu, H. (2015). Total antioxidant capacity of serum determined using the potassium permanganate agar method based on serum diffusion in agar. Bioinorganic Chemistry and Applications, 2015. https://doi.org/10.1155/2015/406071

Authors

Ahmed Saci
saci.ahmed@edu.univ-oran1.dz (Primary Contact)
Samia Gharbi
Fatima Djadouni
Noureddine Karkachi
Saci, A., Gharbi, S., Djadouni, F., & Karkachi, N. (2025). Screening of Five Lactobacillus Bacteria with Probiotic Properties from Indigenous Klila Cheese. The North African Journal of Food and Nutrition Research, 9(20), 59–73. https://doi.org/10.51745/najfnr.9.20.59-73

Article Details

Received 2025-01-09
Accepted 2025-06-15
Published 2025-07-25