Talbina as a functional food and a source of health-beneficial ingredients: a narrative review

Authors

  • Lamia Lahouar Laboratoire de recherche LR.14.ES.06 « Bioressources : Biologie Intégrative & Valorisation » ''BIOLIVAL'' de l’Institut Supérieur de Biotechnologie de Monastir-Université de Monastir https://orcid.org/0000-0002-2542-1085
  • Lotfi Achour Laboratoire de recherche LR.14.ES.06 « Bioressources : Biologie Intégrative & Valorisation » ''BIOLIVAL'' de l’Institut Supérieur de Biotechnologie de Monastir-Université de Monastir https://orcid.org/0000-0002-8909-8598
  • Imed Latiri Laboratoire de Physiologie, Faculté de Médecine, Université de Sousse, Sousse, Tunisie

DOI:

https://doi.org/10.51745/najfnr.5.12.139-151

Keywords:

Barley wholegrain, fermented milk, natural honey, functional food, nutraceutical ingredients

Abstract

During the past two decades, several researchers have claimed that traditional foods are healthier products and better sources of micronutrients. Talbina is a well-known traditional food in North Africa, Middle East and South East Asia. Talbina is made by adding 1-2 tablespoons of barley (100% wholegrain barley) to cup of water. Cook on low heat for15 minutes in a water bath. After that a cup of Laban (fermented milk) or milk is added. It can be sweetened with honey. This broth can be used as a stock for soups or stews or as a thickener. Talbina is a healthy food helps in depression and stress relief. It has high antioxidant activity as well as anti-inflammatory. Its consumption regularly proves to be an effective and safe strategy for treating different chronic diseases. It is a rich source of different essential nutrients and antimicrobials, both of which have been linked to a reduction in chronic disease. However, Talbina has not been well studied or defined by the scientific community. This review defines Talbina and discusses the various bioactive compounds in this food and their health benefits.

Downloads

Download data is not yet available.

References

Shibamoto, T., Kanzava, K., Shahidi, F., & Ho, C. (2008). Functional Food and Health (ACS Symposium Series, 993) (Illustrated ed.). American Chemical Society. DOI: https://doi.org/10.1021/bk-2008-0993

Paliyath, G., Bakovic, M., & Shetty, K. (2011). Functional foods, nutraceuticals, and degenerative disease prevention. John Wiley & Sons. DOI: https://doi.org/10.1002/9780470960844

Pang, G., Xie, J., Chen, Q., & Hu, Z. (2012). How functional foods play critical roles in human health. Food Science and Human Wellness, 1(1), 26–60. https://doi.org/10.1016/j.fshw.2012.10.001 . DOI: https://doi.org/10.1016/j.fshw.2012.10.001

Abuajah, C. I., Ogbonna, A. C., & Osuji, C. M. (2014). Functional components and medicinal properties of food: a review. Journal of Food Science and Technology, 52(5), 2522–2529. https://doi.org/10.1007/s13197-014-1396-5 DOI: https://doi.org/10.1007/s13197-014-1396-5

Bleiel, J. (2010). Functional foods from the perspective of the consumer: How to make it a success? International Dairy Journal, 20(4), 303–306. https://doi.org/10.1016/j.idairyj.2009.11.009 DOI: https://doi.org/10.1016/j.idairyj.2009.11.009

Aryee, A.N.A. & Boye, J.I. (2015). Current and Emerging Trends in the Formulation and Manufacture of Nutraceuticals and Functional Food Products, In Aryee A.N. and Boye J.I. (Eds.), Nutraceutical and Functional Food Processing Technology. Wiley Blackwell, UK. https://doi.org/10.1002/9781118504956.ch1 DOI: https://doi.org/10.1002/9781118504956.ch1

Sidhu, J. S., Kabir, Y., & Huffman, F. G. (2007). Functional foods from cereal grains. International Journal of Food Properties, 10(2), 231-244. https://doi.org/10.1080/10942910601045289 DOI: https://doi.org/10.1080/10942910601045289

Kristbergsson, K., & Oliveira, J. (2016). Traditional Foods: General and Consumer Aspects (Integrating Food Science and Engineering Knowledge Into the Food Chain, 10) (1st ed. 2016 ed.). Springer. DOI: https://doi.org/10.1007/978-1-4899-7648-2

Kuhnlein, H. V. (2003). Micronutrient, nutrition, and traditional food systems of indigenous peoples. Food, Nutrition and Agriculture, 32, 33–39. Available at: https://www.fao.org/3/y8346m/y8346m04.pdf

Salehi, M., Kuhnlein, H. V., Shahbazi, M., Kimiagar, M. S., Kolahi, A. A., & Mehrabi, Y. (2005). Effect of Traditional Food on Nutrition Improvement of Iranian Tribeswomen. Ecology of Food and Nutrition, 44(1), 81–95. https://doi.org/10.1080/03670240590904353 DOI: https://doi.org/10.1080/03670240590904353

Inamdar, V., Chimmad, B. V., & Naik, R. (2005). Nutrient Composition of Traditional Festival Foods of North Karnataka. Journal of Human Ecology, 18(1), 43–48. https://doi.org/10.1080/09709274.2005.11905805 DOI: https://doi.org/10.1080/09709274.2005.11905805

Tajouri, A. (1999). La thérapie de la Talbina. Arabic Version, Edition: El asre. ISBN: 977-19-9080-2.

Abdel-Hassib, R. (2007). Talbina: A food and drug. Mecca, KSA: International Organization of the Holy Quran and Hadiths.

Barakat, A., Dayem, T., Tellawy, F. & Naem, M. (2009). Effect of drying Talbina with spray drying technique on the cholesterol lowering effect of the produced instant Talbina compared with the classic Talbina. Egyptian Journal Applied Sciences, 24 (3B), 559–581.

Borneo, R., & León, A. E. (2012). Whole grain cereals: functional components and health benefits. Food Funct, 3(2), 110–119. https://doi.org/10.1039/c1fo10165j . DOI: https://doi.org/10.1039/C1FO10165J

Gogineni, V. K. (2013). Probiotics: History and Evolution. Journal of Ancient Diseases & Preventive Remedies, 01(02). https://doi.org/10.4172/2329-8731.1000107 DOI: https://doi.org/10.4172/2329-8731.1000107

de Moreno De LeBlanc, A., & Perdigón, G. (2010). The application of probiotic fermented milks in cancer and intestinal inflammation. Proceedings of the Nutrition Society, 69(3), 421–428. https://doi.org/10.1017/s002966511000159x DOI: https://doi.org/10.1017/S002966511000159X

Shiby, V. K., & Mishra, H. N. (2013). Fermented Milks and Milk Products as Functional Foods—A Review. Critical Reviews in Food Science and Nutrition, 53(5), 482–496. https://doi.org/10.1080/10408398.2010.547398 DOI: https://doi.org/10.1080/10408398.2010.547398

Nagai, T., Inoue, R., Kanamori, N., Suzuki, N., & Nagashima, T. (2006). Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chemistry, 97(2), 256–262. https://doi.org/10.1016/j.foodchem.2005.03.045 DOI: https://doi.org/10.1016/j.foodchem.2005.03.045

Moniruzzaman, M., Sulaiman, S. A., Khalil, M. I., & Gan, S. H. (2013). Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: a comparison with manuka honey. Chemistry Central Journal, 7(1). https://doi.org/10.1186/1752-153x-7-138 DOI: https://doi.org/10.1186/1752-153X-7-138

Spilioti, E., Jaakkola, M., Tolonen, T., Lipponen, M., Virtanen, V., Chinou, I., Kassi, E., Karabournioti, S., & Moutsatsou, P. (2014). Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE, 9(4), e94860. https://doi.org/10.1371/journal.pone.0094860 DOI: https://doi.org/10.1371/journal.pone.0094860

Abdel-Latif, M. M. (2015). Chemoprevention of gastrointestinal cancers by natural honey. World Journal of Pharmacology, 4(1), 160. https://doi.org/10.5497/wjp.v4.i1.160 DOI: https://doi.org/10.5497/wjp.v4.i1.160

Das, A., Datta, S., Mukherjee, S., Bose, S., Ghosh, S., & Dhar, P. (2015). Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT - Food Science and Technology, 61(1), 244–250. https://doi.org/10.1016/j.lwt.2014.11.044 DOI: https://doi.org/10.1016/j.lwt.2014.11.044

Shahar, S., Badrasawi, M., Haron, & Abdul Manaf, Z. (2013). Effect of Talbinah food consumption on depressive symptoms among elderly individuals in long term care facilities, randomized clinical trial. Clinical Interventions in Aging, 279. https://doi.org/10.2147/cia.s37586 DOI: https://doi.org/10.2147/CIA.S37586

Asmaa, M. A., Mohamed, K.E., Fawzy, Y., El-Fishawy, A. & El-Sayed, A. (2011). Assessment of Chemical Properties of Raw, Germinated Barley Grains, Talbina, and Biscuits Enriched with Talbina. Journal of Agricultural Science, 42,117–135.

Baik, B. K., & Ullrich, S. E. (2008). Barley for food: Characteristics, improvement, and renewed interest. Journal of Cereal Science, 48(2), 233–242. https://doi.org/10.1016/j.jcs.2008.02.002 DOI: https://doi.org/10.1016/j.jcs.2008.02.002

Lahouar, L., Ghrairi, F., el Felah, M., Salem, H. B., Miled, A. H., Hammami, M., & Achour, L. (2010). Effect of dietary fiber of “Rihane” barley grains and azoxymethane on serum and liver lipid variables in Wistar rats. Journal of Physiology and Biochemistry, 67(1), 27–34. https://doi.org/10.1007/s13105-010-0045-3 DOI: https://doi.org/10.1007/s13105-010-0045-3

Izydorczyk, M. S., McMillan, T., Bazin, S., Kletke, J., Dushnicky, L., Dexter, J., Chepurna, A., & Rossnagel, B. (2014). Milling of Canadian oats and barley for functional food ingredients: Oat bran and barley fibre-rich fractions. Canadian Journal of Plant Science, 94(3), 573–586. https://doi.org/10.4141/cjps2013-229 DOI: https://doi.org/10.4141/cjps2013-229

Lahouar, L., Pochart, P., Salem, H. B., el Felah, M., Mokni, M., Magne, F., Mangin, I., Suau, A., Pereira, E., Hammami, M., & Achour, L. (2012). Effect of dietary fibre of barley variety ‘Rihane’ on azoxymethane-induced aberrant crypt foci development and on colonic microbiota diversity in rats. British Journal of Nutrition, 108(11), 2034–2042. https://doi.org/10.1017/s0007114512000219 DOI: https://doi.org/10.1017/S0007114512000219

Lahouar, L., Ghrairi, F., Arem, A. E., Sghaeir, W., Felah, M. E., Salem, H. B., Sriha, B., & Achour, L. (2014). Attenuation of histopathological alterations of colon, liver and lung by dietary fibre of barley Rihane in azoxymethane-treated rats. Food Chemistry, 149, 271–276. https://doi.org/10.1016/j.foodchem.2013.10.101 DOI: https://doi.org/10.1016/j.foodchem.2013.10.101

ŠTerna, V., Zute, S., & Jākobsone, I. (2015). Grain Composition and Functional Ingredients of Barley Varieties Created in Latvia. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 69(4), 158–162. https://doi.org/10.1515/prolas-2015-0023 DOI: https://doi.org/10.1515/prolas-2015-0023

Baniwal, P., Mehra, R., Kumar, N., Sharma, S., & Kumar, S. (2021). Cereals: Functional constituents and its health benefits. The Pharma Innovation, 10(2), 343–349. https://doi.org/10.22271/tpi.2021.v10.i2e.5681 DOI: https://doi.org/10.22271/tpi.2021.v10.i2e.5681

Gani, A., SM, W., & FA, M. (2012). Whole-Grain Cereal Bioactive Compounds and Their Health Benefits: A Review. Journal of Food Processing & Technology, 03(03). https://doi.org/10.4172/2157-7110.1000146 DOI: https://doi.org/10.4172/2157-7110.1000146

Izydorczyk, M & Dexter, J. (2004). Barley, Milling and processing. In Wrigley, C., Corke, H., & Walker, C. E. (2004). Encyclopedia of Grain Science (1st Ed.). Academic Press. DOI: https://doi.org/10.1016/B0-12-765490-9/00014-8

Franz, M., & Sampson, L. (2006). Challenges in developing a whole grain database: Definitions, methods and quantification. Journal of Food Composition and Analysis, 19, S38–S44. https://doi.org/10.1016/j.jfca.2005.12.010 DOI: https://doi.org/10.1016/j.jfca.2005.12.010

Jacobs, D. R., Marquart, L., Slavin, J., & Kushi, L. H. (1998). Whole‐grain intake and cancer: An expanded review and meta‐analysis. Nutrition and Cancer, 30(2), 85–96. https://doi.org/10.1080/01635589809514647 DOI: https://doi.org/10.1080/01635589809514647

McKeown, N. M., Meigs, J. B., Liu, S., Wilson, P. W., & Jacques, P. F. (2002). Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. The American Journal of Clinical Nutrition, 76(2), 390–398. https://doi.org/10.1093/ajcn/76.2.390 DOI: https://doi.org/10.1093/ajcn/76.2.390

Lahouar, L. (2012). Evaluation of medicinal properties and nutritional characterizations of barley Rihane (Hordeum vulgare L). Thesis University of Monastir, Tunisia, 87–106.

Brennan, C. S., & Cleary, L. J. (2005). The potential use of cereal (1→3,1→4)-β-d-glucans as functional food ingredients. Journal of Cereal Science, 42(1), 1–13. https://doi.org/10.1016/j.jcs.2005.01.002 DOI: https://doi.org/10.1016/j.jcs.2005.01.002

Shimizu, C., Kihara, M., Aoe, S., Araki, S., Ito, K., Hayashi, K., Watari, J., Sakata, Y., & Ikegami, S. (2007). Effect of High β-Glucan Barley on Serum Cholesterol Concentrations and Visceral Fat Area in Japanese Men—A Randomized, Double-blinded, Placebo-controlled Trial. Plant Foods for Human Nutrition, 63(1), 21–25. https://doi.org/10.1007/s11130-007-0064-6 DOI: https://doi.org/10.1007/s11130-007-0064-6

Talati, R., Baker, W. L., Pabilonia, M. S., White, C. M., & Coleman, C. I. (2009). The Effects of Barley-Derived Soluble Fiber on Serum Lipids. The Annals of Family Medicine, 7(2), 157–163. https://doi.org/10.1370/afm.917 DOI: https://doi.org/10.1370/afm.917

Kahlon, T. S., Edwards, R. H., & Chow, F. I. (1998). Effect of Extrusion on Hypocholesterolemic Properties of Rice, Oat, Corn, and Wheat Bran Diets in Hamsters. Cereal Chemistry Journal, 75(6), 897–903. https://doi.org/10.1094/cchem.1998.75.6.897 DOI: https://doi.org/10.1094/CCHEM.1998.75.6.897

Arena, M., Caggianiello, G., Fiocco, D., Russo, P., Torelli, M., Spano, G., & Capozzi, V. (2014). Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria. International Journal of Molecular Sciences, 15(2), 3025–3039. https://doi.org/10.3390/ijms15023025 DOI: https://doi.org/10.3390/ijms15023025

Alu’datt, M. H., Rababah, T., Ereifej, K., Alli, I., Alrababah, M. A., Almajwal, A., Masadeh, N., & Alhamad, M. N. (2012). Effects of barley flour and barley protein isolate on chemical, functional, nutritional and biological properties of Pita bread. Food Hydrocolloids, 26(1), 135–143. https://doi.org/10.1016/j.foodhyd.2011.04.018 DOI: https://doi.org/10.1016/j.foodhyd.2011.04.018

Michaelidou, A. (2008). Factors influencing nutritional and health profile of milk and milk products. Small Ruminant Research, 79(1), 42–50. https://doi.org/10.1016/j.smallrumres.2008.07.007 DOI: https://doi.org/10.1016/j.smallrumres.2008.07.007

Ceballos, L. S., Morales, E. R., de la Torre Adarve, G., Castro, J. D., Martínez, L. P., & Sampelayo, M. R. S. (2009). Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis, 22(4), 322–329. https://doi.org/10.1016/j.jfca.2008.10.020 DOI: https://doi.org/10.1016/j.jfca.2008.10.020

Fox, P.F. (2009). Milk, An overview. in, A. Thompson, M. Boland, H. Singh (Eds.) Milk Proteins—From Expression to Food. Elsevier Inc., Burlington, MA, 1–54. DOI: https://doi.org/10.1016/B978-0-12-374039-7.00001-5

Park, Y. W. (2009). Bioactive Components in Milk and Dairy Products (1st ed.). Wiley-Blackwell. DOI: https://doi.org/10.1002/9780813821504

Huppertz, T., Kelly, A. L. & Fox, P. F. (2009) Milk Lipids – Composition, Origin and Properties, in Tamime, A. Y. (2009). Dairy Fats and Related Products. Wiley. DOI: https://doi.org/10.1002/9781444316223.ch1

Collado, M., Isolauri, E., Salminen, S., & Sanz, Y. (2009). The Impact of Probiotic on Gut Health. Current Drug Metabolism, 10(1), 68–78. https://doi.org/10.2174/138920009787048437 DOI: https://doi.org/10.2174/138920009787048437

Panesar, P. S. (2011). Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food and Nutrition Sciences, 02(01), 47–51. https://doi.org/10.4236/fns.2011.21006 DOI: https://doi.org/10.4236/fns.2011.21006

Azcárate-Peril, M. A., Sikes, M., & Bruno-Bárcena, J. M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? American Journal of Physiology-Gastrointestinal and Liver Physiology, 301(3), G401–G424. https://doi.org/10.1152/ajpgi.00110.2011 DOI: https://doi.org/10.1152/ajpgi.00110.2011

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013, 481651. https://doi.org/10.5402/2013/481651 DOI: https://doi.org/10.5402/2013/481651

Frei, R., Akdis, M., & O’Mahony, L. (2015). Prebiotics, probiotics, synbiotics, and the immune system. Current Opinion in Gastroenterology, 31(2), 153–158. https://doi.org/10.1097/mog.0000000000000151 DOI: https://doi.org/10.1097/MOG.0000000000000151

Kobyliak, N., Conte, C., Cammarota, G., Haley, A. P., Styriak, I., Gaspar, L., Fusek, J., Rodrigo, L., & Kruzliak, P. (2016). Probiotics in prevention and treatment of obesity: a critical view. Nutrition & Metabolism, 13(1). https://doi.org/10.1186/s12986-016-0067-0 DOI: https://doi.org/10.1186/s12986-016-0067-0

McElhatton, A., & Idrissi, E. M. M. (2016). Modernization of Traditional Food Processes and Products (Integrating Food Science and Engineering Knowledge Into the Food Chain, 11) (1st ed. 2016 ed.). Springer. DOI: https://doi.org/10.1007/978-1-4899-7671-0

O. Samet-Bali. (2012). Development of fermented milk “Leben” made from spontaneous fermented cow’s milk. African Journal of Biotechnology, 11(7). https://doi.org/10.5897/ajb11.2806 DOI: https://doi.org/10.5897/AJB11.2806

Belkaaloul, K., Chekroun, A., Ait-Abdessalam, A., Saidi, D., S., & Kheroua, O. (2010). Growth, acidification and proteolysis performance of two co-cultures (Lactobacillus plantarum-Bifidobacterium longum and Streptococcus thermophilus-Bifidobacterium longum). African Journal of Biotechnology, 9(10), 1463–1469. https://doi.org/10.5897/ajb09.1090 DOI: https://doi.org/10.5897/AJB09.1090

Taïbi, A., Dabour, N., Lamoureux, M., Roy, D., & LaPointe, G. (2011). Comparative transcriptome analysis of Lactococcus lactis subsp. cremoris strains under conditions simulating Cheddar cheese manufacture. International Journal of Food Microbiology, 146(3), 263–275. https://doi.org/10.1016/j.ijfoodmicro.2011.02.034 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.02.034

Mufandaedza, J., Viljoen, B., Feresu, S., & Gadaga, T. (2006). Antimicrobial properties of lactic acid bacteria and yeast-LAB cultures isolated from traditional fermented milk against pathogenic Escherichia coli and Salmonella enteritidis strains. International Journal of Food Microbiology, 108(1), 147–152. https://doi.org/10.1016/j.ijfoodmicro.2005.11.005 DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.11.005

Benkerroum, N., & Tamime, A. (2004). Technology transfer of some Moroccan traditional dairy products (lben, jben and smen) to small industrial scale. Food Microbiology, 21(4), 399–413. https://doi.org/10.1016/j.fm.2003.08.006 DOI: https://doi.org/10.1016/j.fm.2003.08.006

Feresu, S., & Nyati, H. (1990). Fate of pathogenic and non-pathogenic Escherichia coli strains in two fermented milk products. Journal of Applied Bacteriology, 69(6), 814–821. https://doi.org/10.1111/j.1365-2672.1990.tb01578.x DOI: https://doi.org/10.1111/j.1365-2672.1990.tb01578.x

Chammas, G., Saliba, R., Corrieu, G., & Beal, C. (2006). Characterisation of lactic acid bacteria isolated from fermented milk “laban.” International Journal of Food Microbiology, 110(1), 52–61. https://doi.org/10.1016/j.ijfoodmicro.2006.01.043 DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.01.043

Wouters, J. T., Ayad, E. H., Hugenholtz, J., & Smit, G. (2002). Microbes from raw milk for fermented dairy products. International Dairy Journal, 12(2–3), 91–109. https://doi.org/10.1016/s0958-6946(01)00151-0 DOI: https://doi.org/10.1016/S0958-6946(01)00151-0

Olfa Samet-Bali. (2012). Characterisation of typical Tunisian fermented milk: Leben. African Journal of Microbiology Research, 6(9). https://doi.org/10.5897/ajmr12.065 DOI: https://doi.org/10.5897/AJMR12.065

Nah, S. L., & Chau, C. F. (2010). Issues and challenges in defeating world hunger. Trends in Food Science & Technology, 21(11), 544–557. https://doi.org/10.1016/j.tifs.2010.07.013 DOI: https://doi.org/10.1016/j.tifs.2010.07.013

Holzapfel, W. (2002). Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal of Food Microbiology, 75(3), 197–212. https://doi.org/10.1016/s0168-1605(01)00707-3 DOI: https://doi.org/10.1016/S0168-1605(01)00707-3

Morelli, L., & Capurso, L. (2012). FAO/WHO Guidelines on Probiotics. Journal of Clinical Gastroenterology, 46, S1–S2. https://doi.org/10.1097/mcg.0b013e318269fdd5 DOI: https://doi.org/10.1097/MCG.0b013e318269fdd5

Vasiljevic, T. & Shah, N. P. (2007). Fermented Milk, Health Benefits Beyond Probiotic Effect, in Hui, Y. H., Chandan, R. C., Clark, S., Cross, N. A., Dobbs, J. C., Hurst, W. J., Nollet, L. M. L., Shimoni, E., Sinha, N. K., Smith, E. B., Surapat, S., Toldrá, F., & Titchenal, A. (2007). Handbook of Food Products Manufacturing, Volume 2: Health, Meat, Milk, Poultry, Seafood, and Vegetables (Volume 2 ed.). Wiley-Interscience.

Bernardeau, M., Vernoux, J., Henridubernet, S., & Gueguen, M. (2008). Safety assessment of dairy microorganisms: The Lactobacillus genus☆. International Journal of Food Microbiology, 126(3), 278–285. https://doi.org/10.1016/j.ijfoodmicro.2007.08.015 DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.08.015

Giraffa, G., Chanishvili, N., & Widyastuti, Y. (2010). Importance of lactobacilli in food and feed biotechnology. Research in Microbiology, 161(6), 480–487. https://doi.org/10.1016/j.resmic.2010.03.001 DOI: https://doi.org/10.1016/j.resmic.2010.03.001

Adimasu Abeshu, M. (2015). Medicinal Uses of Honey. Biology and Medicine, 08(02). https://doi.org/10.4172/0974-8369.1000276 DOI: https://doi.org/10.4172/0974-8369.1000276

Ajibola, A., Chamunorwa, J. P., & Erlwanger, K. H. (2012). Nutraceutical values of natural honey and its contribution to human health and wealth. Nutrition & Metabolism, 9(1), 61. https://doi.org/10.1186/1743-7075-9-61 DOI: https://doi.org/10.1186/1743-7075-9-61

Solayman, M., Islam, M. A., Paul, S., Ali, Y., Khalil, M. I., Alam, N., & Gan, S. H. (2015). Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219–233. https://doi.org/10.1111/1541-4337.12182 DOI: https://doi.org/10.1111/1541-4337.12182

Khalil, M., Alam, N., Moniruzzaman, M., Sulaiman, S., & Gan, S. (2011). Phenolic Acid Composition and Antioxidant Properties of Malaysian Honeys. Journal of Food Science, 76(6), C921–C928. https://doi.org/10.1111/j.1750-3841.2011.02282.x DOI: https://doi.org/10.1111/j.1750-3841.2011.02282.x

Silva, L. R., Videira, R., Monteiro, A. P., Valentão, P., & Andrade, P. B. (2009). Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchemical Journal, 93(1), 73–77. https://doi.org/10.1016/j.microc.2009.05.005 DOI: https://doi.org/10.1016/j.microc.2009.05.005

Bagde, A. B., Sawant, R., Bingare, S. D., Sawai, R., & Nikumbh, M. B. (2013). Therapeutic and nutritional values of honey [MADHU]. International Research Journal of Pharmacy, 4(3), 19–22. https://doi.org/10.7897/2230-8407.04305 DOI: https://doi.org/10.7897/2230-8407.04305

Ball, D. W. (2007). The Chemical Composition of Honey. Journal of Chemical Education, 84(10), 1643. https://doi.org/10.1021/ed084p1643 DOI: https://doi.org/10.1021/ed084p1643

Codex Alimentarius Committee on Sugars (2001). Codex standard 12, revised Codex Standard for Honey. Standards and Standard Methods, 11: 1–7.

Bentabol Manzanares, A., Hernández García, Z., Rodríguez Galdón, B., Rodríguez Rodríguez, E., & Díaz Romero, C. (2014). Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT - Food Science and Technology, 55(2), 572–578. https://doi.org/10.1016/j.lwt.2013.09.024 DOI: https://doi.org/10.1016/j.lwt.2013.09.024

Juan-Borrás, M., Domenech, E., Hellebrandova, M., & Escriche, I. (2014). Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Research International, 60, 86–94. https://doi.org/10.1016/j.foodres.2013.11.045 DOI: https://doi.org/10.1016/j.foodres.2013.11.045

Karabagias, I. K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chemistry, 146, 548–557. https://doi.org/10.1016/j.foodchem.2013.09.105 DOI: https://doi.org/10.1016/j.foodchem.2013.09.105

Boussaid, A., Chouaibi, M., Attouchi, S., Hamdi, S., & Ferrari, G. (2018). Classification of Southern Tunisian honeys based on their physicochemical and textural properties. International Journal of Food Properties, 21(1), 2590–2609. https://doi.org/10.1080/10942912.2018.1540988 DOI: https://doi.org/10.1080/10942912.2018.1540988

Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., Dogan, M., & Kayacier, A. (2013). Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124–131. https://doi.org/10.1016/j.indcrop.2012.12.042 DOI: https://doi.org/10.1016/j.indcrop.2012.12.042

Saxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry, 118(2), 391–397. https://doi.org/10.1016/j.foodchem.2009.05.001 DOI: https://doi.org/10.1016/j.foodchem.2009.05.001

Isla, M. I., Craig, A., Ordoñez, R., Zampini, C., Sayago, J., Bedascarrasbure, E., Alvarez, A., Salomón, V., & Maldonado, L. (2011). Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT - Food Science and Technology, 44(9), 1922–1930. https://doi.org/10.1016/j.lwt.2011.04.003 DOI: https://doi.org/10.1016/j.lwt.2011.04.003

Corbella, E., & Cozzolino, D. (2006). Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometrics. LWT - Food Science and Technology, 39(5), 534–539. https://doi.org/10.1016/j.lwt.2005.03.011 DOI: https://doi.org/10.1016/j.lwt.2005.03.011

Moreira, R. F., de Maria, C. A., Pietroluongo, M., & Trugo, L. C. (2007). Chemical changes in the non-volatile fraction of Brazilian honeys during storage under tropical conditions. Food Chemistry, 104(3), 1236–1241. https://doi.org/10.1016/j.foodchem.2007.01.055 DOI: https://doi.org/10.1016/j.foodchem.2007.01.055

da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051 DOI: https://doi.org/10.1016/j.foodchem.2015.09.051

Erejuwa, O. O., Sulaiman, S. A., & Ab Wahab, M. S. (2012). Honey: A Novel Antioxidant. Molecules, 17(4), 4400–4423. https://doi.org/10.3390/molecules17044400 DOI: https://doi.org/10.3390/molecules17044400

Alvarez-Suarez, J. M., Tulipani, S., Romandini, S., Bertoli, E., & Battino, M. (2009). Contribution of honey in nutrition and human health: a review. Mediterranean Journal of Nutrition and Metabolism, 3(1), 15–23. https://doi.org/10.3233/s12349-009-0051-6 DOI: https://doi.org/10.3233/s12349-009-0051-6

Tan, H. T., Rahman, R. A., Gan, S. H., Halim, A. S., Hassan, S. A., Sulaiman, S. A., & BS, K. K. (2009). The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. BMC Complementary and Alternative Medicine, 9(1). https://doi.org/10.1186/1472-6882-9-34 DOI: https://doi.org/10.1186/1472-6882-9-34

Koç, A. N., Silici, S., Kasap, F., Hörmet-Öz, H. T., Mavus-Buldu, H., & Ercal, B. D. (2011). Antifungal Activity of the Honeybee Products Against Candida spp. and Trichosporon spp. Journal of Medicinal Food, 14(1–2), 128–134. https://doi.org/10.1089/jmf.2009.0296 DOI: https://doi.org/10.1089/jmf.2009.0296

Oraif, S.S.M. (2011). Nutritional composition and biological characteristic of Talbina drink. Masters thesis, Universiti Putra Malaysia.

Moustafa, T. A., S. Kamel, H., & A. El Malt, M. (2006). High Dietary Fibre Intake (Talbina) as Adjunct in the Management of Diabetic Macular Edema. Journal of Medical Sciences, 7(1), 81–87. https://doi.org/10.3923/jms.2007.81.87 DOI: https://doi.org/10.3923/jms.2007.81.87

Ahmed M.A. (2014). Preparation and evaluation of high antioxidant Talbina as a protective and therapeutic meal. Journal of Agricultural Science and Technology, 4: 418–425.

Barakat, A. E. T. S., Abd-Elmoez, S. I., Masoud, M. F., & Hagag, M. M. (2013). Supplementation of Some Fruit Nectars with Technological Barley Preparations as Prebiotic Sources. Journal of Life Sciences and Technologies, 38–43. https://doi.org/10.12720/jolst.1.1.38-43 DOI: https://doi.org/10.12720/jolst.1.1.38-43

Gibson, G. R., Probert, H. M., Loo, J. V., Rastall, R. A., & Roberfroid, M. B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17(2), 259–275. https://doi.org/10.1079/nrr200479 DOI: https://doi.org/10.1079/NRR200479

Patel, S., & Goyal, A. (2012). The current trends and future perspectives of prebiotics research: a review. 3 Biotech, 2(2), 115–125. https://doi.org/10.1007/s13205-012-0044-x DOI: https://doi.org/10.1007/s13205-012-0044-x

Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela, M., Mattila-Sandholm, T., & Poutanen, K. (2002). In vitrofermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture, 82(8), 781–789. https://doi.org/10.1002/jsfa.1095 DOI: https://doi.org/10.1002/jsfa.1095

Patel, H., Pandiella, S., Wang, R., & Webb, C. (2003). Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of lactobacilli. Food Microbiology, 21(1): 83–89. https://doi.org/10.1016/S0740-0020(03)00016-9 DOI: https://doi.org/10.1016/S0740-0020(03)00016-9

Ouwehand, A. & Vesterlund, S. (2004). Antimicrobial components from lactic acid bacteria,” in Lactic cid Bacteria-Microbiological and Functional Aspects, S. Salminen, A. V. Wright, and A. Ouwehand, Marcel Dekker (Eds.), (New York Inc). pp. 375–395. DOI: https://doi.org/10.1201/9780824752033.ch11

Mitsou, E. K., Panopoulou, N., Turunen, K., Spiliotis, V., & Kyriacou, A. (2010). Prebiotic potential of barley derived β-glucan at low intake levels: A randomised, double-blinded, placebo-controlled clinical study. Food Research International, 43(4), 1086–1092. https://doi.org/10.1016/j.foodres.2010.01.020 DOI: https://doi.org/10.1016/j.foodres.2010.01.020

Chiu, H. H., Tsai, C. C., Hsih, H. Y., & Tsen, H. Y. (2007). Screening from pickled vegetables the potential probiotic strains of lactic acid bacteria able to inhibit the Salmonella invasion in mice. Journal of Applied Microbiology, 0(0), 071010063119012-??? https://doi.org/10.1111/j.1365-2672.2007.03573.x DOI: https://doi.org/10.1111/j.1365-2672.2007.03573.x

Felis, G.E. & Dellaglio, F. (2007). Taxonomy of Lactobacilli and Bifidobacteria. Current Issues of Intestinal Microbiology, 8: 44–61.

Nomoto, K. (2005). Prevention of infections by probiotics. Journal of Bioscience and Bioengineering, 100(6), 583–592. https://doi.org/10.1263/jbb.100.583 DOI: https://doi.org/10.1263/jbb.100.583

Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17(11), 1262–1277. https://doi.org/10.1016/j.idairyj.2007.01.014 DOI: https://doi.org/10.1016/j.idairyj.2007.01.014

El-Nezami, H. S., Chrevatidis, A., Auriola, S., Salminen, S., & Mykkänen, H. (2002). Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Additives and Contaminants, 19 (7),680–686. https://doi.org/10.1080/02652030210134236 DOI: https://doi.org/10.1080/02652030210134236

El-Nezami, H., Polychronaki, N., Salminen, S., & Mykkänen, H. (2002). Binding Rather Than Metabolism May Explain the Interaction of Two Food-Grade Lactobacillus Strains with Zearalenone and Its Derivative ɑ́-Zearalenol. Applied and Environmental Microbiology, 68 (7), 3545–3549. https://doi.org/10.1128/aem.68.7.3545-3549.2002 DOI: https://doi.org/10.1128/AEM.68.7.3545-3549.2002

Niderkorn, V., Boudra, H., & Morgavi, D. (2006). Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Journal of Applied Microbiology, 101(4), 849–856. https://doi.org/10.1111/j.1365-2672.2006.02958.x DOI: https://doi.org/10.1111/j.1365-2672.2006.02958.x

Bawazir, A. E. (2011). Chronic effect of olive oil on some neurotransmitter contents in different brain regions and physiological, histological structure of liver and kidney of male albino rats. World Journal of Neuroscience, 01(03), 31–37. https://doi.org/10.4236/wjns.2011.13005 DOI: https://doi.org/10.4236/wjns.2011.13005

Downloads

Published

2021-12-27

How to Cite

Lahouar, L. ., Achour, L. ., & Latiri, I. . (2021). Talbina as a functional food and a source of health-beneficial ingredients: a narrative review. The North African Journal of Food and Nutrition Research, 5(12), 139–151. https://doi.org/10.51745/najfnr.5.12.139-151