Talbina as a functional food and a source of health-beneficial ingredients: a narrative review
Abstract
During the past two decades, several researchers have claimed that traditional foods are healthier products and better sources of micronutrients. Talbina is a well-known traditional food in North Africa, Middle East and South East Asia. Talbina is made by adding 1-2 tablespoons of barley (100% wholegrain barley) to cup of water. Cook on low heat for15 minutes in a water bath. After that a cup of Laban (fermented milk) or milk is added. It can be sweetened with honey. This broth can be used as a stock for soups or stews or as a thickener. Talbina is a healthy food helps in depression and stress relief. It has high antioxidant activity as well as anti-inflammatory. Its consumption regularly proves to be an effective and safe strategy for treating different chronic diseases. It is a rich source of different essential nutrients and antimicrobials, both of which have been linked to a reduction in chronic disease. However, Talbina has not been well studied or defined by the scientific community. This review defines Talbina and discusses the various bioactive compounds in this food and their health benefits.
Full text article
References
[2] Paliyath, G., Bakovic, M., & Shetty, K. (2011). Functional foods, nutraceuticals, and degenerative disease prevention. John Wiley & Sons.
[3] Pang, G., Xie, J., Chen, Q., & Hu, Z. (2012). How functional foods play critical roles in human health. Food Science and Human Wellness, 1(1), 26–60. https://doi.org/10.1016/j.fshw.2012.10.001 .
[4] Abuajah, C. I., Ogbonna, A. C., & Osuji, C. M. (2014). Functional components and medicinal properties of food: a review. Journal of Food Science and Technology, 52(5), 2522–2529. https://doi.org/10.1007/s13197-014-1396-5
[5] Bleiel, J. (2010). Functional foods from the perspective of the consumer: How to make it a success? International Dairy Journal, 20(4), 303–306. https://doi.org/10.1016/j.idairyj.2009.11.009
[6] Aryee, A.N.A. & Boye, J.I. (2015). Current and Emerging Trends in the Formulation and Manufacture of Nutraceuticals and Functional Food Products, In Aryee A.N. and Boye J.I. (Eds.), Nutraceutical and Functional Food Processing Technology. Wiley Blackwell, UK. https://doi.org/10.1002/9781118504956.ch1
[7] Sidhu, J. S., Kabir, Y., & Huffman, F. G. (2007). Functional foods from cereal grains. International Journal of Food Properties, 10(2), 231-244. https://doi.org/10.1080/10942910601045289
[8] Kristbergsson, K., & Oliveira, J. (2016). Traditional Foods: General and Consumer Aspects (Integrating Food Science and Engineering Knowledge Into the Food Chain, 10) (1st ed. 2016 ed.). Springer.
[9] Kuhnlein, H. V. (2003). Micronutrient, nutrition, and traditional food systems of indigenous peoples. Food, Nutrition and Agriculture, 32, 33–39. Available at: https://www.fao.org/3/y8346m/y8346m04.pdf
[10] Salehi, M., Kuhnlein, H. V., Shahbazi, M., Kimiagar, M. S., Kolahi, A. A., & Mehrabi, Y. (2005). Effect of Traditional Food on Nutrition Improvement of Iranian Tribeswomen. Ecology of Food and Nutrition, 44(1), 81–95. https://doi.org/10.1080/03670240590904353
[11] Inamdar, V., Chimmad, B. V., & Naik, R. (2005). Nutrient Composition of Traditional Festival Foods of North Karnataka. Journal of Human Ecology, 18(1), 43–48. https://doi.org/10.1080/09709274.2005.11905805
[12] Tajouri, A. (1999). La thérapie de la Talbina. Arabic Version, Edition: El asre. ISBN: 977-19-9080-2.
[13] Abdel-Hassib, R. (2007). Talbina: A food and drug. Mecca, KSA: International Organization of the Holy Quran and Hadiths.
[14] Barakat, A., Dayem, T., Tellawy, F. & Naem, M. (2009). Effect of drying Talbina with spray drying technique on the cholesterol lowering effect of the produced instant Talbina compared with the classic Talbina. Egyptian Journal Applied Sciences, 24 (3B), 559–581.
[15] Borneo, R., & León, A. E. (2012). Whole grain cereals: functional components and health benefits. Food Funct, 3(2), 110–119. https://doi.org/10.1039/c1fo10165j .
[16] Gogineni, V. K. (2013). Probiotics: History and Evolution. Journal of Ancient Diseases & Preventive Remedies, 01(02). https://doi.org/10.4172/2329-8731.1000107
[17] de Moreno De LeBlanc, A., & Perdigón, G. (2010). The application of probiotic fermented milks in cancer and intestinal inflammation. Proceedings of the Nutrition Society, 69(3), 421–428. https://doi.org/10.1017/s002966511000159x
[18] Shiby, V. K., & Mishra, H. N. (2013). Fermented Milks and Milk Products as Functional Foods—A Review. Critical Reviews in Food Science and Nutrition, 53(5), 482–496. https://doi.org/10.1080/10408398.2010.547398
[19] Nagai, T., Inoue, R., Kanamori, N., Suzuki, N., & Nagashima, T. (2006). Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chemistry, 97(2), 256–262. https://doi.org/10.1016/j.foodchem.2005.03.045
[20] Moniruzzaman, M., Sulaiman, S. A., Khalil, M. I., & Gan, S. H. (2013). Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: a comparison with manuka honey. Chemistry Central Journal, 7(1). https://doi.org/10.1186/1752-153x-7-138
[21] Spilioti, E., Jaakkola, M., Tolonen, T., Lipponen, M., Virtanen, V., Chinou, I., Kassi, E., Karabournioti, S., & Moutsatsou, P. (2014). Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE, 9(4), e94860. https://doi.org/10.1371/journal.pone.0094860
[22] Abdel-Latif, M. M. (2015). Chemoprevention of gastrointestinal cancers by natural honey. World Journal of Pharmacology, 4(1), 160. https://doi.org/10.5497/wjp.v4.i1.160
[23] Das, A., Datta, S., Mukherjee, S., Bose, S., Ghosh, S., & Dhar, P. (2015). Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT - Food Science and Technology, 61(1), 244–250. https://doi.org/10.1016/j.lwt.2014.11.044
[24] Shahar, S., Badrasawi, M., Haron, & Abdul Manaf, Z. (2013). Effect of Talbinah food consumption on depressive symptoms among elderly individuals in long term care facilities, randomized clinical trial. Clinical Interventions in Aging, 279. https://doi.org/10.2147/cia.s37586
[25] Asmaa, M. A., Mohamed, K.E., Fawzy, Y., El-Fishawy, A. & El-Sayed, A. (2011). Assessment of Chemical Properties of Raw, Germinated Barley Grains, Talbina, and Biscuits Enriched with Talbina. Journal of Agricultural Science, 42,117–135.
[26] Baik, B. K., & Ullrich, S. E. (2008). Barley for food: Characteristics, improvement, and renewed interest. Journal of Cereal Science, 48(2), 233–242. https://doi.org/10.1016/j.jcs.2008.02.002
[27] Lahouar, L., Ghrairi, F., el Felah, M., Salem, H. B., Miled, A. H., Hammami, M., & Achour, L. (2010). Effect of dietary fiber of “Rihane” barley grains and azoxymethane on serum and liver lipid variables in Wistar rats. Journal of Physiology and Biochemistry, 67(1), 27–34. https://doi.org/10.1007/s13105-010-0045-3
[28] Izydorczyk, M. S., McMillan, T., Bazin, S., Kletke, J., Dushnicky, L., Dexter, J., Chepurna, A., & Rossnagel, B. (2014). Milling of Canadian oats and barley for functional food ingredients: Oat bran and barley fibre-rich fractions. Canadian Journal of Plant Science, 94(3), 573–586. https://doi.org/10.4141/cjps2013-229
[29] Lahouar, L., Pochart, P., Salem, H. B., el Felah, M., Mokni, M., Magne, F., Mangin, I., Suau, A., Pereira, E., Hammami, M., & Achour, L. (2012). Effect of dietary fibre of barley variety ‘Rihane’ on azoxymethane-induced aberrant crypt foci development and on colonic microbiota diversity in rats. British Journal of Nutrition, 108(11), 2034–2042. https://doi.org/10.1017/s0007114512000219
[30] Lahouar, L., Ghrairi, F., Arem, A. E., Sghaeir, W., Felah, M. E., Salem, H. B., Sriha, B., & Achour, L. (2014). Attenuation of histopathological alterations of colon, liver and lung by dietary fibre of barley Rihane in azoxymethane-treated rats. Food Chemistry, 149, 271–276. https://doi.org/10.1016/j.foodchem.2013.10.101
[31] ŠTerna, V., Zute, S., & Jākobsone, I. (2015). Grain Composition and Functional Ingredients of Barley Varieties Created in Latvia. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 69(4), 158–162. https://doi.org/10.1515/prolas-2015-0023
[32] Baniwal, P., Mehra, R., Kumar, N., Sharma, S., & Kumar, S. (2021). Cereals: Functional constituents and its health benefits. The Pharma Innovation, 10(2), 343–349. https://doi.org/10.22271/tpi.2021.v10.i2e.5681
[33] Gani, A., SM, W., & FA, M. (2012). Whole-Grain Cereal Bioactive Compounds and Their Health Benefits: A Review. Journal of Food Processing & Technology, 03(03). https://doi.org/10.4172/2157-7110.1000146
[34] Izydorczyk, M & Dexter, J. (2004). Barley, Milling and processing. In Wrigley, C., Corke, H., & Walker, C. E. (2004). Encyclopedia of Grain Science (1st Ed.). Academic Press.
[35] Franz, M., & Sampson, L. (2006). Challenges in developing a whole grain database: Definitions, methods and quantification. Journal of Food Composition and Analysis, 19, S38–S44. https://doi.org/10.1016/j.jfca.2005.12.010
[36] Jacobs, D. R., Marquart, L., Slavin, J., & Kushi, L. H. (1998). Whole‐grain intake and cancer: An expanded review and meta‐analysis. Nutrition and Cancer, 30(2), 85–96. https://doi.org/10.1080/01635589809514647
[37] McKeown, N. M., Meigs, J. B., Liu, S., Wilson, P. W., & Jacques, P. F. (2002). Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. The American Journal of Clinical Nutrition, 76(2), 390–398. https://doi.org/10.1093/ajcn/76.2.390
[38] Lahouar, L. (2012). Evaluation of medicinal properties and nutritional characterizations of barley Rihane (Hordeum vulgare L). Thesis University of Monastir, Tunisia, 87–106.
[39] Brennan, C. S., & Cleary, L. J. (2005). The potential use of cereal (1→3,1→4)-β-d-glucans as functional food ingredients. Journal of Cereal Science, 42(1), 1–13. https://doi.org/10.1016/j.jcs.2005.01.002
[40] Shimizu, C., Kihara, M., Aoe, S., Araki, S., Ito, K., Hayashi, K., Watari, J., Sakata, Y., & Ikegami, S. (2007). Effect of High β-Glucan Barley on Serum Cholesterol Concentrations and Visceral Fat Area in Japanese Men—A Randomized, Double-blinded, Placebo-controlled Trial. Plant Foods for Human Nutrition, 63(1), 21–25. https://doi.org/10.1007/s11130-007-0064-6
[41] Talati, R., Baker, W. L., Pabilonia, M. S., White, C. M., & Coleman, C. I. (2009). The Effects of Barley-Derived Soluble Fiber on Serum Lipids. The Annals of Family Medicine, 7(2), 157–163. https://doi.org/10.1370/afm.917
[42] Kahlon, T. S., Edwards, R. H., & Chow, F. I. (1998). Effect of Extrusion on Hypocholesterolemic Properties of Rice, Oat, Corn, and Wheat Bran Diets in Hamsters. Cereal Chemistry Journal, 75(6), 897–903. https://doi.org/10.1094/cchem.1998.75.6.897
[43] Arena, M., Caggianiello, G., Fiocco, D., Russo, P., Torelli, M., Spano, G., & Capozzi, V. (2014). Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria. International Journal of Molecular Sciences, 15(2), 3025–3039. https://doi.org/10.3390/ijms15023025
[44] Alu’datt, M. H., Rababah, T., Ereifej, K., Alli, I., Alrababah, M. A., Almajwal, A., Masadeh, N., & Alhamad, M. N. (2012). Effects of barley flour and barley protein isolate on chemical, functional, nutritional and biological properties of Pita bread. Food Hydrocolloids, 26(1), 135–143. https://doi.org/10.1016/j.foodhyd.2011.04.018
[45] Michaelidou, A. (2008). Factors influencing nutritional and health profile of milk and milk products. Small Ruminant Research, 79(1), 42–50. https://doi.org/10.1016/j.smallrumres.2008.07.007
[46] Ceballos, L. S., Morales, E. R., de la Torre Adarve, G., Castro, J. D., Martínez, L. P., & Sampelayo, M. R. S. (2009). Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis, 22(4), 322–329. https://doi.org/10.1016/j.jfca.2008.10.020
[47] Fox, P.F. (2009). Milk, An overview. in, A. Thompson, M. Boland, H. Singh (Eds.) Milk Proteins—From Expression to Food. Elsevier Inc., Burlington, MA, 1–54.
[48] Park, Y. W. (2009). Bioactive Components in Milk and Dairy Products (1st ed.). Wiley-Blackwell.
[49] Huppertz, T., Kelly, A. L. & Fox, P. F. (2009) Milk Lipids – Composition, Origin and Properties, in Tamime, A. Y. (2009). Dairy Fats and Related Products. Wiley.
[50] Collado, M., Isolauri, E., Salminen, S., & Sanz, Y. (2009). The Impact of Probiotic on Gut Health. Current Drug Metabolism, 10(1), 68–78. https://doi.org/10.2174/138920009787048437
[51] Panesar, P. S. (2011). Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food and Nutrition Sciences, 02(01), 47–51. https://doi.org/10.4236/fns.2011.21006
[52] Azcárate-Peril, M. A., Sikes, M., & Bruno-Bárcena, J. M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? American Journal of Physiology-Gastrointestinal and Liver Physiology, 301(3), G401–G424. https://doi.org/10.1152/ajpgi.00110.2011
[53] Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013, 481651. https://doi.org/10.5402/2013/481651
[54] Frei, R., Akdis, M., & O’Mahony, L. (2015). Prebiotics, probiotics, synbiotics, and the immune system. Current Opinion in Gastroenterology, 31(2), 153–158. https://doi.org/10.1097/mog.0000000000000151
[55] Kobyliak, N., Conte, C., Cammarota, G., Haley, A. P., Styriak, I., Gaspar, L., Fusek, J., Rodrigo, L., & Kruzliak, P. (2016). Probiotics in prevention and treatment of obesity: a critical view. Nutrition & Metabolism, 13(1). https://doi.org/10.1186/s12986-016-0067-0
[56] McElhatton, A., & Idrissi, E. M. M. (2016). Modernization of Traditional Food Processes and Products (Integrating Food Science and Engineering Knowledge Into the Food Chain, 11) (1st ed. 2016 ed.). Springer.
[57] O. Samet-Bali. (2012). Development of fermented milk “Leben” made from spontaneous fermented cow’s milk. African Journal of Biotechnology, 11(7). https://doi.org/10.5897/ajb11.2806
[58] Belkaaloul, K., Chekroun, A., Ait-Abdessalam, A., Saidi, D., S., & Kheroua, O. (2010). Growth, acidification and proteolysis performance of two co-cultures (Lactobacillus plantarum-Bifidobacterium longum and Streptococcus thermophilus-Bifidobacterium longum). African Journal of Biotechnology, 9(10), 1463–1469. https://doi.org/10.5897/ajb09.1090
[59] Taïbi, A., Dabour, N., Lamoureux, M., Roy, D., & LaPointe, G. (2011). Comparative transcriptome analysis of Lactococcus lactis subsp. cremoris strains under conditions simulating Cheddar cheese manufacture. International Journal of Food Microbiology, 146(3), 263–275. https://doi.org/10.1016/j.ijfoodmicro.2011.02.034
[60] Mufandaedza, J., Viljoen, B., Feresu, S., & Gadaga, T. (2006). Antimicrobial properties of lactic acid bacteria and yeast-LAB cultures isolated from traditional fermented milk against pathogenic Escherichia coli and Salmonella enteritidis strains. International Journal of Food Microbiology, 108(1), 147–152. https://doi.org/10.1016/j.ijfoodmicro.2005.11.005
[61] Benkerroum, N., & Tamime, A. (2004). Technology transfer of some Moroccan traditional dairy products (lben, jben and smen) to small industrial scale. Food Microbiology, 21(4), 399–413. https://doi.org/10.1016/j.fm.2003.08.006
[62] Feresu, S., & Nyati, H. (1990). Fate of pathogenic and non-pathogenic Escherichia coli strains in two fermented milk products. Journal of Applied Bacteriology, 69(6), 814–821. https://doi.org/10.1111/j.1365-2672.1990.tb01578.x
[63] Chammas, G., Saliba, R., Corrieu, G., & Beal, C. (2006). Characterisation of lactic acid bacteria isolated from fermented milk “laban.” International Journal of Food Microbiology, 110(1), 52–61. https://doi.org/10.1016/j.ijfoodmicro.2006.01.043
[64] Wouters, J. T., Ayad, E. H., Hugenholtz, J., & Smit, G. (2002). Microbes from raw milk for fermented dairy products. International Dairy Journal, 12(2–3), 91–109. https://doi.org/10.1016/s0958-6946(01)00151-0
[65] Olfa Samet-Bali. (2012). Characterisation of typical Tunisian fermented milk: Leben. African Journal of Microbiology Research, 6(9). https://doi.org/10.5897/ajmr12.065
[66] Nah, S. L., & Chau, C. F. (2010). Issues and challenges in defeating world hunger. Trends in Food Science & Technology, 21(11), 544–557. https://doi.org/10.1016/j.tifs.2010.07.013
[67] Holzapfel, W. (2002). Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal of Food Microbiology, 75(3), 197–212. https://doi.org/10.1016/s0168-1605(01)00707-3
[68] Morelli, L., & Capurso, L. (2012). FAO/WHO Guidelines on Probiotics. Journal of Clinical Gastroenterology, 46, S1–S2. https://doi.org/10.1097/mcg.0b013e318269fdd5
[69] Vasiljevic, T. & Shah, N. P. (2007). Fermented Milk, Health Benefits Beyond Probiotic Effect, in Hui, Y. H., Chandan, R. C., Clark, S., Cross, N. A., Dobbs, J. C., Hurst, W. J., Nollet, L. M. L., Shimoni, E., Sinha, N. K., Smith, E. B., Surapat, S., Toldrá, F., & Titchenal, A. (2007). Handbook of Food Products Manufacturing, Volume 2: Health, Meat, Milk, Poultry, Seafood, and Vegetables (Volume 2 ed.). Wiley-Interscience.
[70] Bernardeau, M., Vernoux, J., Henridubernet, S., & Gueguen, M. (2008). Safety assessment of dairy microorganisms: The Lactobacillus genus☆. International Journal of Food Microbiology, 126(3), 278–285. https://doi.org/10.1016/j.ijfoodmicro.2007.08.015
[71] Giraffa, G., Chanishvili, N., & Widyastuti, Y. (2010). Importance of lactobacilli in food and feed biotechnology. Research in Microbiology, 161(6), 480–487. https://doi.org/10.1016/j.resmic.2010.03.001
[72] Adimasu Abeshu, M. (2015). Medicinal Uses of Honey. Biology and Medicine, 08(02). https://doi.org/10.4172/0974-8369.1000276
[73] Ajibola, A., Chamunorwa, J. P., & Erlwanger, K. H. (2012). Nutraceutical values of natural honey and its contribution to human health and wealth. Nutrition & Metabolism, 9(1), 61. https://doi.org/10.1186/1743-7075-9-61
[74] Solayman, M., Islam, M. A., Paul, S., Ali, Y., Khalil, M. I., Alam, N., & Gan, S. H. (2015). Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219–233. https://doi.org/10.1111/1541-4337.12182
[75] Khalil, M., Alam, N., Moniruzzaman, M., Sulaiman, S., & Gan, S. (2011). Phenolic Acid Composition and Antioxidant Properties of Malaysian Honeys. Journal of Food Science, 76(6), C921–C928. https://doi.org/10.1111/j.1750-3841.2011.02282.x
[76] Silva, L. R., Videira, R., Monteiro, A. P., Valentão, P., & Andrade, P. B. (2009). Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchemical Journal, 93(1), 73–77. https://doi.org/10.1016/j.microc.2009.05.005
[77] Bagde, A. B., Sawant, R., Bingare, S. D., Sawai, R., & Nikumbh, M. B. (2013). Therapeutic and nutritional values of honey [MADHU]. International Research Journal of Pharmacy, 4(3), 19–22. https://doi.org/10.7897/2230-8407.04305
[78] Ball, D. W. (2007). The Chemical Composition of Honey. Journal of Chemical Education, 84(10), 1643. https://doi.org/10.1021/ed084p1643
[79] Codex Alimentarius Committee on Sugars (2001). Codex standard 12, revised Codex Standard for Honey. Standards and Standard Methods, 11: 1–7.
[80] Bentabol Manzanares, A., Hernández García, Z., Rodríguez Galdón, B., Rodríguez Rodríguez, E., & Díaz Romero, C. (2014). Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT - Food Science and Technology, 55(2), 572–578. https://doi.org/10.1016/j.lwt.2013.09.024
[81] Juan-Borrás, M., Domenech, E., Hellebrandova, M., & Escriche, I. (2014). Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Research International, 60, 86–94. https://doi.org/10.1016/j.foodres.2013.11.045
[82] Karabagias, I. K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chemistry, 146, 548–557. https://doi.org/10.1016/j.foodchem.2013.09.105
[83] Boussaid, A., Chouaibi, M., Attouchi, S., Hamdi, S., & Ferrari, G. (2018). Classification of Southern Tunisian honeys based on their physicochemical and textural properties. International Journal of Food Properties, 21(1), 2590–2609. https://doi.org/10.1080/10942912.2018.1540988
[84] Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., Dogan, M., & Kayacier, A. (2013). Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124–131. https://doi.org/10.1016/j.indcrop.2012.12.042
[85] Saxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry, 118(2), 391–397. https://doi.org/10.1016/j.foodchem.2009.05.001
[86] Isla, M. I., Craig, A., Ordoñez, R., Zampini, C., Sayago, J., Bedascarrasbure, E., Alvarez, A., Salomón, V., & Maldonado, L. (2011). Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT - Food Science and Technology, 44(9), 1922–1930. https://doi.org/10.1016/j.lwt.2011.04.003
[87] Corbella, E., & Cozzolino, D. (2006). Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometrics. LWT - Food Science and Technology, 39(5), 534–539. https://doi.org/10.1016/j.lwt.2005.03.011
[88] Moreira, R. F., de Maria, C. A., Pietroluongo, M., & Trugo, L. C. (2007). Chemical changes in the non-volatile fraction of Brazilian honeys during storage under tropical conditions. Food Chemistry, 104(3), 1236–1241. https://doi.org/10.1016/j.foodchem.2007.01.055
[89] da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
[90] Erejuwa, O. O., Sulaiman, S. A., & Ab Wahab, M. S. (2012). Honey: A Novel Antioxidant. Molecules, 17(4), 4400–4423. https://doi.org/10.3390/molecules17044400
[91] Alvarez-Suarez, J. M., Tulipani, S., Romandini, S., Bertoli, E., & Battino, M. (2009). Contribution of honey in nutrition and human health: a review. Mediterranean Journal of Nutrition and Metabolism, 3(1), 15–23. https://doi.org/10.3233/s12349-009-0051-6
[92] Tan, H. T., Rahman, R. A., Gan, S. H., Halim, A. S., Hassan, S. A., Sulaiman, S. A., & BS, K. K. (2009). The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. BMC Complementary and Alternative Medicine, 9(1). https://doi.org/10.1186/1472-6882-9-34
[93] Koç, A. N., Silici, S., Kasap, F., Hörmet-Öz, H. T., Mavus-Buldu, H., & Ercal, B. D. (2011). Antifungal Activity of the Honeybee Products Against Candida spp. and Trichosporon spp. Journal of Medicinal Food, 14(1–2), 128–134. https://doi.org/10.1089/jmf.2009.0296
[94] Oraif, S.S.M. (2011). Nutritional composition and biological characteristic of Talbina drink. Masters thesis, Universiti Putra Malaysia.
[95] Moustafa, T. A., S. Kamel, H., & A. El Malt, M. (2006). High Dietary Fibre Intake (Talbina) as Adjunct in the Management of Diabetic Macular Edema. Journal of Medical Sciences, 7(1), 81–87. https://doi.org/10.3923/jms.2007.81.87
[96] Ahmed M.A. (2014). Preparation and evaluation of high antioxidant Talbina as a protective and therapeutic meal. Journal of Agricultural Science and Technology, 4: 418–425.
[97] Barakat, A. E. T. S., Abd-Elmoez, S. I., Masoud, M. F., & Hagag, M. M. (2013). Supplementation of Some Fruit Nectars with Technological Barley Preparations as Prebiotic Sources. Journal of Life Sciences and Technologies, 38–43. https://doi.org/10.12720/jolst.1.1.38-43
[98] Gibson, G. R., Probert, H. M., Loo, J. V., Rastall, R. A., & Roberfroid, M. B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17(2), 259–275. https://doi.org/10.1079/nrr200479
[99] Patel, S., & Goyal, A. (2012). The current trends and future perspectives of prebiotics research: a review. 3 Biotech, 2(2), 115–125. https://doi.org/10.1007/s13205-012-0044-x
[100] Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela, M., Mattila-Sandholm, T., & Poutanen, K. (2002). In vitrofermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture, 82(8), 781–789. https://doi.org/10.1002/jsfa.1095
[101] Patel, H., Pandiella, S., Wang, R., & Webb, C. (2003). Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of lactobacilli. Food Microbiology, 21(1): 83–89. https://doi.org/10.1016/S0740-0020(03)00016-9
[102] Ouwehand, A. & Vesterlund, S. (2004). Antimicrobial components from lactic acid bacteria,” in Lactic cid Bacteria-Microbiological and Functional Aspects, S. Salminen, A. V. Wright, and A. Ouwehand, Marcel Dekker (Eds.), (New York Inc). pp. 375–395.
[103] Mitsou, E. K., Panopoulou, N., Turunen, K., Spiliotis, V., & Kyriacou, A. (2010). Prebiotic potential of barley derived β-glucan at low intake levels: A randomised, double-blinded, placebo-controlled clinical study. Food Research International, 43(4), 1086–1092. https://doi.org/10.1016/j.foodres.2010.01.020
[104] Chiu, H. H., Tsai, C. C., Hsih, H. Y., & Tsen, H. Y. (2007). Screening from pickled vegetables the potential probiotic strains of lactic acid bacteria able to inhibit the Salmonella invasion in mice. Journal of Applied Microbiology, 0(0), 071010063119012-??? https://doi.org/10.1111/j.1365-2672.2007.03573.x
[105] Felis, G.E. & Dellaglio, F. (2007). Taxonomy of Lactobacilli and Bifidobacteria. Current Issues of Intestinal Microbiology, 8: 44–61.
[106] Nomoto, K. (2005). Prevention of infections by probiotics. Journal of Bioscience and Bioengineering, 100(6), 583–592. https://doi.org/10.1263/jbb.100.583
[107] Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17(11), 1262–1277. https://doi.org/10.1016/j.idairyj.2007.01.014
[108] El-Nezami, H. S., Chrevatidis, A., Auriola, S., Salminen, S., & Mykkänen, H. (2002). Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Additives and Contaminants, 19 (7),680–686. https://doi.org/10.1080/02652030210134236
[109] El-Nezami, H., Polychronaki, N., Salminen, S., & Mykkänen, H. (2002). Binding Rather Than Metabolism May Explain the Interaction of Two Food-Grade Lactobacillus Strains with Zearalenone and Its Derivative ɑ́-Zearalenol. Applied and Environmental Microbiology, 68 (7), 3545–3549. https://doi.org/10.1128/aem.68.7.3545-3549.2002
[110] Niderkorn, V., Boudra, H., & Morgavi, D. (2006). Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Journal of Applied Microbiology, 101(4), 849–856. https://doi.org/10.1111/j.1365-2672.2006.02958.x
[111] Bawazir, A. E. (2011). Chronic effect of olive oil on some neurotransmitter contents in different brain regions and physiological, histological structure of liver and kidney of male albino rats. World Journal of Neuroscience, 01(03), 31–37. https://doi.org/10.4236/wjns.2011.13005
Authors
Copyright (c) 2021 Lamia Lahouar, Lotfi Achour, Imed Latiri
This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.