Polyvinyl Alcohol Films with Algerian Eruca vesicaria Extract as Natural Antioxidants for Food Packaging
Abstract
Background: The increasing interest in active packaging films stems from their potential to reduce reliance on synthetic chemical additives for food preservation, thereby enhancing food quality and extending shelf life.
Aims: This study aimed to develop, characterize, and evaluate the functional properties of polyvinyl alcohol (PVA)-based solvent cast films loaded with a hydroethanolic extract derived from Eruca vesicaria (arugula), intending to produce novel active packaging materials.
Methods: Initially, the total phenolic content of the Eruca vesicaria extract was quantified, and its precise chemical profile was determined through chromatography coupled with tandem mass spectrometry (LC-MS/MS). The resulting flexible and active PVA films were subjected to comprehensive analysis using Fourier-transform infrared spectroscopy (FTIR) to identify molecular interactions, along with assessments of water contact angle, opacity, transparency, and antioxidant activity using the DPPH and the phosphomolybdenum assay.
Results: The LC-MS/MS analysis successfully identified eight distinct phenolic compounds within the hydroethanolic extract. FTIR spectroscopy confirmed effective molecular interactions between the incorporated extract and the PVA polymer matrix. Furthermore, the inclusion of the extract significantly altered the surface wettability (water contact angle) of the films. Critically, the films demonstrated substantially improved functional properties. The antioxidant activity assessment demonstrated that films incorporated with the Eruca vesicaria extract exhibited significantly higher antioxidant activity (IC50 = 0.75 ± 0.01, EC50 = 1.8 ± 0. 1 mg/mL), compared to pure PVA films (IC50 = 1.53 ± 0.03 mg/mL, EC50 = 10.69 ± 0.5mg/mL).
Conclusions: The findings demonstrate that integrating Eruca vesicaria antioxidants into PVA films is a viable and highly effective strategy for producing active packaging materials with enhanced functional and barrier properties.
Keywords: Arugula; Active Packaging; Bioactive Additive; Eruca vesicaria; Polyvinyl Alcohol Films.
Full text article
References
Acemi, A. (2022). Monitoring the effects of chitosan on the profile of certain cell wall and membrane biomolecules in the leaves of Eruca vesicaria ssp. sativa through FT-IR spectroscopy. Plant Physiology and Biochemistry, 173, 25–32. https://doi.org/10.1016/j.plaphy.2022.01.020
Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P. P., Barros, L., & Ferreira, I. C. F. R. (2021). Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function, 12(1), 14–29. https://doi.org/10.1039/d0fo02324h
Annu, Ali, A., & Ahmed, S. (2021). Eco-friendly natural extract loaded antioxidative chitosan/polyvinyl alcohol based active films for food packaging. Heliyon, 7(3), e06550. https://doi.org/10.1016/j.heliyon.2021.e06550
Arcan, I., & Yemenicioğlu, A. (2011). Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Research International (Ottawa, Ont.), 44(2), 550–556. https://doi.org/10.1016/j.foodres.2010.11.034
Bell, L., Chadwick, M., Puranik, M., Tudor, R., Methven, L., & Wagstaff, C. (2022). Quantitative trait loci analysis of glucosinolate, sugar, and organic acid concentrations in Eruca vesicaria subsp. sativa. Molecular Horticulture, 2(1), 23. https://doi.org/10.1186/s43897-022-00044-x
Björkman, M., Klingen, I., Birch, A. N. E., Bones, A. M., Bruce, T. J. A., Johansen, T. J., Meadow, R., Mølmann, J., Seljåsen, R., Smart, L. E., & Stewart, D. (2011). Phytochemicals of Brassicaceae in plant protection and human health--influences of climate, environment and agronomic practice. Phytochemistry, 72(7), 538–556. https://doi.org/10.1016/j.phytochem.2011.01.014
Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2020). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3). https://doi.org/10.38212/2224-6614.2748
Chen, C.-W., Xie, J., Yang, F.-X., Zhang, H.-L., Xu, Z.-W., Liu, J.-L., & Chen, Y.-J. (2018). Development of moisture-absorbing and antioxidant active packaging film based on poly(vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel. Journal of Food Processing and Preservation, 42(1), e13374. https://doi.org/10.1111/jfpp.13374
Chiellini, E., Corti, A., D’Antone, S., & Solaro, R. (2003). Biodegradation of poly (vinyl alcohol) based materials. Progress in Polymer Science, 28(6), 963–1014. https://doi.org/10.1016/s0079-6700(02)00149-1
DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 41(3), 319–326. https://doi.org/10.1016/s0278-6915(02)00258-2
Favela-González, K. M., Hernández-Almanza, A. Y., & De la Fuente-Salcido, N. M. (2020). The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry, 44(10), e13414. https://doi.org/10.1111/jfbc.13414
Figueroa-Enríquez, C. E., Rodríguez-Félix, F., Ruiz-Cruz, S., Castro-Enriquez, D. D., Gonzalez-Rios, H., Perez-Alvarez, J. Á., Tapia-Hernández, J. A., Madera-Santana, T. J., Montaño-Grijalva, E. A., & López-Peña, I. Y. (2024). Application of active packaging films for extending the shelf life of red meats: A review. Processes (Basel, Switzerland), 12(10), 2115. https://doi.org/10.3390/pr12102115
García-Gurrola, A., Escobar-Puentes, A. A., Rincón, S., Martínez-Bustos, F., & Zepeda, A. (2021). Succinylated starch nanocapsules loaded with the polyphenolic extract from arugula (Eruca sativa) leaves: Colloidal, chemical, and structural properties. Die Starke, 73(11–12), 2100059. https://doi.org/10.1002/star.202100059
Ghasemzadeh, A., & Jaafar, H. Z. E. (2014). Optimization of reflux conditions for total flavonoid and total phenolic extraction and enhanced antioxidant capacity in Pandan (Pandanus amaryllifolius Roxb.) using response surface methodology. TheScientificWorldJournal, 2014, 523120. https://doi.org/10.1155/2014/523120
Grami, D., Selmi, S., Rtibi, K., Sebai, H., & De Toni, L. (2024). Emerging role of Eruca sativa mill. In male reproductive health. Nutrients, 16(2), 253. https://doi.org/10.3390/nu16020253
Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962. https://doi.org/10.1021/jf990146l
Kanatt, S. R., Chander, R., & Sharma, A. (2007). Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chemistry, 100(2), 451–458. https://doi.org/10.1016/j.foodchem.2005.09.066
Kanatt, S. R., Chander, R., & Sharma, A. (2010). Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science & Technology, 45(2), 216–222. https://doi.org/10.1111/j.1365-2621.2009.02124.x
Kavas, E., Terzioğlu, P., & Sıcak, Y. (2023). Betanin and nano-calcium carbonate incorporated polyvinyl alcohol/starch films for active and intelligent packaging applications. Journal of Polymers and the Environment, 31(11), 4919–4929. https://doi.org/10.1007/s10924-023-02868-0
Li, Z., Lee, H. W., Liang, X., Liang, D., Wang, Q., Huang, D., & Ong, C. N. (2018). Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules (Basel, Switzerland), 23(5). https://doi.org/10.3390/molecules23051139
López-de-Dicastillo, C., Gómez-Estaca, J., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2012). Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chemistry, 131(4), 1376–1384. https://doi.org/10.1016/j.foodchem.2011.10.002
Luciano, C. G., Rodrigues, M. M., Lourenço, R. V., Bittante, A. M. Q. B., Fernandes, A. M., & do Amaral Sobral, P. J. (2021). Bi-layer gelatin film: Activating film by incorporation of “pitanga” leaf hydroethanolic extract and/or Nisin in the second layer. Food and Bioprocess Technology, 14(1), 106–119. https://doi.org/10.1007/s11947-020-02568-w
Olsen, H., Aaby, K., & Borge, G. I. A. (2009). Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. Journal of Agricultural and Food Chemistry, 57(7), 2816–2825. https://doi.org/10.1021/jf803693t
Ordoñez, R., Atarés, L., & Chiralt, A. (2022). Biodegradable active materials containing phenolic acids for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 21(5), 3910–3930. https://doi.org/10.1111/1541-4337.13011 Google Scholar
Parveen, B., Rajinikanth, V., & Narayanan, M. (2025). Natural plant antioxidants for food preservation and emerging trends in nutraceutical applications. Discover Applied Sciences, 7(8). https://doi.org/10.1007/s42452-025-07464-6
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019
Rizwana, H., Alwhibi, M. S., & Khan, F. (2016). Soliman Chemical composition and antimicrobial activity of Eruca sativa seeds against pathogenic bacteria and fungi. The Journal of Animal & Plant Sciences, 26(6), 1859–1871.
Sanches-Silva, A., Costa, D., Albuquerque, T. G., Buonocore, G. G., Ramos, F., Castilho, M. C., Machado, A. V., & Costa, H. S. (2014). Trends in the use of natural antioxidants in active food packaging: a review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 31(3), 374–395. https://doi.org/10.1080/19440049.2013.879215
Scalbert, A., Monties, B., & Janin, G. (1989). Tannins in wood: comparison of different estimation methods. Journal of Agricultural and Food Chemistry, 37(5), 1324–1329. https://doi.org/10.1021/jf00089a026
Siddiqui, S. A., Khan, S., Mehdizadeh, M., Bahmid, N. A., Adli, D. N., Walker, T. R., Perestrelo, R., & Câmara, J. S. (2023). Phytochemicals and bioactive constituents in food packaging - A systematic review. Heliyon, 9(11), e21196. https://doi.org/10.1016/j.heliyon.2023.e21196
Silva, I. D. de L., Moraes Filho, L. E. P. T. de, Caetano, V. F., Andrade, M. F. de, Hallwass, F., Brito, A. M. S. S., & Vinhas, G. M. (2021). Development of antioxidant active PVA films with plant extract of Caesalpinia ferrea Martius. Lebensmittel-Wissenschaft Und Technologie Food Science and Technology, 144(111215), 111215. https://doi.org/10.1016/j.lwt.2021.111215
Singh, A. K., Kim, J. Y., & Lee, Y. S. (2022). Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules, 27(21). https://doi.org/10.3390/molecules27217513
Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. https://doi.org/10.1016/j.tifs.2008.07.003
Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules (Basel, Switzerland), 14(6), 2167–2180. https://doi.org/10.3390/molecules14062167
Terzioğlu, P., Güney, F., Parın, F. N., Şen, İ., & Tuna, S. (2021). Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packaging and Shelf Life, 30(100742), 100742. https://doi.org/10.1016/j.fpsl.2021.100742
Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742. https://doi.org/10.3390/ijms10093722
Villatoro-Pulido, M., Priego-Capote, F., Álvarez-Sánchez, B., Saha, S., Philo, M., Obregón-Cano, S., De Haro-Bailón, A., Font, R., & Del Río-Celestino, M. (2013). An approach to the phytochemical profiling of rocket Eruca sativa (Mill.) Thell: Identification of bioactive compounds in rocket. Journal of the Science of Food and Agriculture, 93(15), 3809–3819. https://doi.org/10.1002/jsfa.6286
Wang, M., Li, J., Rangarajan, M., Shao, Y., LaVoie, E. J., Huang, T.-C., & Ho, C.-T. (1998). Antioxidative Phenolic Compounds from Sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 46(12), 4869–4873. https://doi.org/10.1021/jf980614b
Zhai, Y., Wang, J., Wang, H., Song, T., Hu, W., & Li, S. (2018). Preparation and characterization of antioxidative and UV-protective larch bark tannin/PVA composite membranes. Molecules (Basel, Switzerland), 23(8), 2073. https://doi.org/10.3390/molecules23082073
Authors
Copyright (c) 2025 Mohamed Habib Brahimi , Messaouda Dekmouche, Duygu Gazioglu Ruzgar, Derradji Hadef, Pınar Terzioğlu

This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.