Cyclodextrins for UV Protection in Food, Beverages, and Agricultural Products: A Comprehensive Review

Sankara Rao Miditana (1) , Winnie Teja Dokka (2) , A. Ramesh Babu (3) , Satheesh Ampolu (4) , Neha Agarwal (5) , Nalini Simma (6)
(1) Department of Chemistry, Government Degree College, Puttur, Tirupati, Andhra Pradesh-517583 , India
(2) Department of Chemistry, Government Degree College, Chintalapudi, Andhra Pradesh-534460 , India
(3) Department of Chemistry, SVA Government College(M), Srikalahasti, Andhra Pradesh-517644 , India
(4) Department of Chemistry, Centurion University of Technology and Management, Vizianagaram, Andhra Pradesh , India
(5) Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow , India
(6) Department of Toxicology, Regional Forensic Science Laboratory, Visakhapatnam, Andhra Pradesh-530009. Department of Chemistry, Government Degree College(M), Srikakulam, Andhra Pradesh-532001 , India

Abstract

Background: Ultraviolet radiation (UVR) poses a significant threat to the stability and shelf-life of food, beverages, and agricultural products. This exposure leads to the degradation of sensitive compounds, resulting in reduced nutritional value, altered physical properties, and compromised products safety. Cyclodextrins (CDs), which possess a unique molecular structure with a hydrophobic cavity and a hydrophilic exterior, offer a promising solution by forming complexes with UVR absorbers. This inclusion complex formation enhances the stability, solubility, and bioavailability of sensitive compounds, thereby providing a protective mechanism against UVR-induced degradation.


Aims: This review comprehensively examines the applications of cyclodextrin-UVR absorber complexes for protecting food, beverages, and agricultural products from UVR-induced damage.


Methods: The methodology involved a comprehensive review of existing literature from scientific databases to analyze the efficacy of CD inclusion complex formation, their protective effects, and potential industrial applications.


Results: The findings indicate that these complexes significantly enhance the stability of UVR-sensitive compounds across all three sectors. In food, CDs protect essential nutrients including vitamins and antioxidants from degradation, prevent oxidation, and improve packaging technologies. For beverages, they stabilize color, flavor, and aroma compounds, preserving their quality over extended shelf-life periods. In agriculture, cyclodextrins mitigate the adverse effects of UVR exposure, protecting pigments and nutrients while improving crop yield and quality. Cyclodextrins protect bioactive molecules mainly by forming reversible inclusion complexes that hide sensitive parts of the molecule inside the CD cavity, lowering exposure to oxygen, light, metals, acids/bases, and volatilization. The effectiveness and the dominant protection pathway do depend on the food matrix (water, lipids, proteins, alcohol, sugar, pH, processing).


Conclusions: CDs-UVR absorber complexes represent an effective strategy for improving the stability and shelf-life of these products. Their ability to form inclusion complexes with UVR-sensitive compounds offers considerable advantages in preserving nutritional value, enhancing product quality, and promoting sustainability. Given the increasing consumer demand for healthier functional and high-quality products with extended shelf-life, cyclodextrin-based technologies are positioned as a vital component in future advancements within these industries. Further research and industrial-scale applications are essential to fully realize their potential.


Keywords: Cyclodextrin; UV-Radiation; Food stability; Agrochemicals; Bioavailability; Antioxidant.

Full text article

Generated from XML file

References

Aiassa, V., Garnero, C., Zoppi, A., & Longhi, M. R. (2023). Cyclodextrins and their derivatives as drug stability modifiers. Pharmaceuticals, 16(8), 1074. https://doi.org/10.3390/ph16081074
Andreu-Sevilla, A. J., López-Nicolás, J. M., Carbonell-Barrachina, A. A., & García-Carmona, F. (2011). Comparative effect of the addition of α-, β-, or γ-cyclodextrin on main sensory and physico-chemical parameters. Journal of Food Science, 76(5), S347-53. https://doi.org/10.1111/j.1750-3841.2011.02190.x
Astray, G., Mejuto, J., & Simal-Gandara, J. (2020). Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes. Food Hydrocolloids, 106, 105882. https://doi.org/10.1016/j.foodhyd.2020.105882
Bates, P. S., Parker, D., & Patti, A. F. (1994). Synthesis and spectroscopic characterisation of lipophilic octylated α-, β- and γ-cyclodextrin derivatives. J. Chem. Soc., Perkin Trans. 2, 4, 657–668. https://doi.org/10.1039/p29940000657
Bao, K., Zhang, A., Cao, Y., & Xu, L. (2024). Achievements in preparation of cyclodextrin–based porous materials for removal of pollutants. Separations, 11(5), 143. https://doi.org/10.3390/separations11050143
Chikamoto, K., & Terao, K. (2021). Alpha-cyclodextrin functions as a dietary fiber. In Functionality of Cyclodextrins in Encapsulation for Food Applications (pp. 255–276). Springer International Publishing. https://doi.org/10.1007/978-3-030-80056-7_13
Chen, W., Liu, D., Zhou, L., Li, Q., & Wu, D. (2021). Antioxidant activity of vitamin E enhanced by cyclodextrin inclusion complex. British Food Journal (Croydon, England), 123(12), 3988–3998. https://doi.org/10.1108/bfj-08-2020-0719
Chen, F.-B., Feng, Y.-C., & Huo, S.-P. (2023). Seed coating with micronutrients improves germination, growth, yield and microelement nutrients of maize (Zea mays L.). Biotechnic & Histochemistry: Official Publication of the Biological Stain Commission, 98(4), 230–242. https://doi.org/10.1080/10520295.2023.2174273
Chakkalakkal, N. D., Thomas, M., Chittillapilly, P. S., Sujith, A., & Anjali, P. D. (2022). Electrospun polymer nanocomposite membrane as a promising seed coat for controlled release of agrichemicals and improved germination: Towards a better agricultural prospect. Journal of Cleaner Production, 377(134479), 134479. https://doi.org/10.1016/j.jclepro.2022.134479
Cid-Samamed, A., Rakmai, J., Mejuto, J. C., Simal-Gandara, J., & Astray, G. (2022). Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chemistry, 384(132467), 132467. https://doi.org/10.1016/j.foodchem.2022.132467
Crini, G., Fourmentin, S., Fenyvesi, É., Torri, G., Fourmentin, M., & Morin-Crini, N. (2018). Cyclodextrins, from molecules to applications. Environmental Chemistry Letters, 16(4), 1361–1375. https://doi.org/10.1007/s10311-018-0763-2
Csapó, J., Prokisch, J., Albert, C., & Sipos, P. (2019). Effect of UV light on food quality and safety. Acta Universitatis Sapientiae Alimentaria, 12(1), 21–41. https://doi.org/10.2478/ausal-2019-0002
Dahabra, L., Broadberry, G., Le Gresley, A., Najlah, M., & Khoder, M. (2021). Sunscreens containing cyclodextrin inclusion complexes for enhanced efficiency: A strategy for skin cancer prevention. Molecules (Basel, Switzerland), 26(6), 1698. https://doi.org/10.3390/molecules26061698
Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry (Barking, London, England), 39(9), 1033–1046. https://doi.org/10.1016/s0032-9592(03)00258-9
Donsingha, S., & Assatarakul, K. (2018). Kinetics model of microbial degradation by UV radiation and shelf life of coconut water. Food Control, 92, 162–168. https://doi.org/10.1016/j.foodcont.2018.04.030
Dong, J., Chen, W., Qin, D., Chen, Y., Li, J., Wang, C., Yu, Y., Feng, J., & Du, X. (2021). Cyclodextrin polymer-valved MoS2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments. Journal of Hazardous Materials, 419(126404), 126404. https://doi.org/10.1016/j.jhazmat.2021.126404
dos Santos Lima, B., Shanmugam, S., de Souza Siqueira Quintans, J., Quintans-Júnior, L. J., & de Souza Araújo, A. A. (2019). Inclusion complex with cyclodextrins enhances the bioavailability of flavonoid compounds: a systematic review. Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe, 18(5), 1337–1359. https://doi.org/10.1007/s11101-019-09650-y
Dutta, M. (2004). Enhanced flushing with cyclodextrin for the remediation of creosote contaminated soil. Louisiana State University Libraries. https://doi.org/10.31390/gradschool_theses.3031
Dutta Gupta, S. (Ed.). (2010). Reactive oxygen species and antioxidants in higher plants. https://doi.org/10.1201/9781439854082
Durante, M., Milano, F., Caroli, M. D., Giotta, L., Piro, G., Mita, G., Frigione, M., & Lenucci, M. S. (2020). Tomato oil encapsulation by α-, β-, and γ-cyclodextrins: A comparative study on the formation of supramolecular structures, antioxidant activity, and carotenoid stability. Foods (Basel, Switzerland), 9(11), 1553. https://doi.org/10.3390/foods9111553
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Dusemund, B., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Leblanc, J.-C., Lindtner, O., Moldeus, P., Mosesso, P., Parent-Massin, D., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R. A., … Lambré, C. (2016). Re‐evaluation of β‐cyclodextrin (E 459) as a food additive. EFSA Journal, 14(12). https://doi.org/10.2903/j.efsa.2016.4628
Farooq, S., Xu, L., Ostovan, A., Qin, C., Liu, Y., Pan, Y., Ping, J., & Ying, Y. (2023). Assessing the greenification potential of cyclodextrin-based molecularly imprinted polymers for pesticides detection. Food Chemistry, 429(136822), 136822. https://doi.org/10.1016/j.foodchem.2023.136822
Fenyvesi, É., Vikmon, M., & Szente, L. (2016). Cyclodextrins in food technology and human nutrition: Benefits and limitations. Critical Reviews in Food Science and Nutrition, 56(12), 1981–2004. https://doi.org/10.1080/10408398.2013.809513
Fouda-Mbanga, B. G., Tywabi-Ngeva, Z., Badawy, W. M., Ebite, C., Onotu, O. P., Abogidi, C., Uzordinma, A. P., & Kaba, S. (2025). Green cyclodextrins-derivatives for sustainable remediation of pesticides and heavy metals: A review. Journal of Molecular Structure, 1328(141326), 141326. https://doi.org/10.1016/j.molstruc.2025.141326
Freudenberg, K., & Jacobi, R. (1935). Über Schardingers Dextrine aus Stärke. Justus Liebigs Annalen Der Chemie, 518(1), 102–108. https://doi.org/10.1002/jlac.19355180107
Gong, M., He, J., Kong, M., Huo, Q., Jiang, Y., Song, J., Han, W., & Lv, G. (2023). A microencapsulation approach to design microbial seed coatings to boost wheat seed germination and seedling growth under salt stress. Frontiers in Plant Science, 14, 1283590. https://doi.org/10.3389/fpls.2023.1283590
Gonzalez Pereira, A., Carpena, M., García Oliveira, P., Mejuto, J. C., Prieto, M. A., & Simal Gandara, J. (2021). Main applications of cyclodextrins in the food industry as the compounds of choice to form host-guest complexes. International Journal of Molecular Sciences, 22(3), 1339. https://doi.org/10.3390/ijms22031339
Halavach, T., Sushiskaya, N., Alieva, L., Lodygina, S., & Lodygin, A. (2022). Properties of cyclodextrins nanocomplexes with peptides and fat-soluble vitamins. In Lecture Notes in Networks and Systems (pp. 207–220). Springer International Publishing
Hamdi, H., Abderrahim, R., & Meganem, F. (2010). Spectroscopic studies of inclusion complex of beta-cyclodextrin and benzidine diammonium dipicrate. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 75(1), 32–36. https://doi.org/10.1016/j.saa.2009.09.018
He, N., Zhang, C., Hou, K., Yu, H., Zhang, D., Chen, M., Zhang, K., & Wang, X. (2023). A comprehensive study on flavor/cyclodextrin inclusion complexes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 679(132613), 132613. https://doi.org/10.1016/j.colsurfa.2023.132613
Honda, M., Zhang, Y., Kageyama, H., Hibino, T., Goto, M., & Nishida, Y. (2024). Development of a continuous production system for Z-isomer-rich carotenoid/2-hydroxypropyl-β-cyclodextrin inclusion complexes using a flow reactor and a spray dryer. Food and Bioproducts Processing, 143, 221–231. https://doi.org/10.1016/j.fbp.2023.11.010
Javed, T., Afzal, I., Shabbir, R., Ikram, K., Saqlain Zaheer, M., Faheem, M., Haider Ali, H., & Iqbal, J. (2022). Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. Journal of the Saudi Society of Agricultural Sciences, 21(8), 536–545. https://doi.org/10.1016/j.jssas.2022.03.003
Kelanne, N., Yang, B., & Laaksonen, O. (2024). Potential of cyclodextrins in food processing for improving sensory properties of food. Food Innovation and Advances, 3(1), 1–10. https://doi.org/10.48130/fia-0024-0001
Kera, N. H., Pillai, S. K., & Ray, S. S. (2024). Effects of UV radiation in sunlight on skin. In SpringerBriefs in Materials (pp. 5–6). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64114-5_2
Khan, N., Singh, A. K., & Saneja, A. (2023). Preparation, characterization, and antioxidant activity of L-Ascorbic acid/HP-β-cyclodextrin inclusion complex-incorporated electrospun nanofibers. Foods (Basel, Switzerland), 12(7), 1363. https://doi.org/10.3390/foods12071363
Koontz, J. L., Marcy, J. E., O’Keefe, S. F., & Duncan, S. E. (2009). Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin. Journal of Agricultural and Food Chemistry, 57(4), 1162–1171. https://doi.org/10.1021/jf802823q
Kou, X., Gao, N., Xu, X., Zhu, J., Ke, Q., & Meng, Q. (2024). Preparation, structural analysis of alcohol aroma compounds/β-cyclodextrin inclusion complexes and the application in strawberry preservation. Food Chemistry, 457(140160), 140160. https://doi.org/10.1016/j.foodchem.2024.140160
Kurkov, S. V., & Loftsson, T. (2013). Cyclodextrins. International Journal of Pharmaceutics, 453(1), 167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
Koutchma, T. (2014). UV Systems for Fluid Products. In Preservation and Shelf Life Extension (pp. 17–23). Elsevier. https://doi.org/10.1016/B978-0-12-416621-9.00004-2
Kurchenko, V., Halavach, T., Sushynskaya, N., Tarun, E., Dudchik, N., Tsygankow, V., Evdokimov, I., & Lodygin, A. (2022). Multicomponent Composites of Cyclodextrin Nanocomplexes with Biologically Active Substances for Functional Foods. Food Processing Techniques and Technology, 52(2), 375–389. https://doi.org/10.21603/2074-9414-2022-2-2370
Li, Z., Chen, S., Gu, Z., Chen, J., & Wu, J. (2014). Alpha-cyclodextrin: Enzymatic production and food applications. Trends in Food Science & Technology, 35(2), 151–160. https://doi.org/10.1016/j.tifs.2013.11.005
Liang, M., Xing, S., Bai, F., Tan, M., & Su, W. (2024). Cyclodextrin-based metal-organic frameworks as microreactors: Purification and stabilization of food bioactive compounds in Confined Spaces. Trends in Food Science & Technology, 150(104588), 104588. https://doi.org/10.1016/j.tifs.2024.104588
Liu, B., Zhang, J., Chen, C., Wang, D., Tian, G., Zhang, G., Cai, D., & Wu, Z. (2021). Infrared-light-responsive controlled-release pesticide using hollow carbon microspheres@polyethylene glycol/α-cyclodextrin gel. Journal of Agricultural and Food Chemistry, 69(25), 6981–6988. https://doi.org/10.1021/acs.jafc.1c01265
Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017–1025. https://doi.org/10.1021/js950534b
Loftsson, Thorsteinn, & Brewster, M. E. (2010). Pharmaceutical applications of cyclodextrins: basic science and product development: Pharmaceutical applications of cyclodextrins. The Journal of Pharmacy and Pharmacology, 62(11), 1607–1621. https://doi.org/10.1111/j.2042-7158.2010.01030.x
Matencio, A., Navarro-Orcajada, S., García-Carmona, F., & López-Nicolás, J. M. (2020). Applications of cyclodextrins in food science. A review. Trends in Food Science & Technology, 104, 132–143. https://doi.org/10.1016/j.tifs.2020.08.009
Milano, F., Tornese, R., De Leo, V., De Caroli, M., Giotta, L., Durante, M., & Lenucci, M. S. (2025). α-Cyclodextrins for stability enhancement of bioactive-rich tomato oil extracted with supercritical CO2: Emulsion performance under thermal and UV-C treatments. Food Bioscience, 68(106768), 106768. https://doi.org/10.1016/j.fbio.2025.106768
Mori, T., Tsuchiya, R., Doi, M., Nagatani, N., & Tanaka, T. (2019). Solubilization of ultraviolet absorbers by cyclodextrin and their potential application in cosmetics. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 93(1–2), 91–96. https://doi.org/10.1007/s10847-018-0846-5
Morillo, E., Madrid, F., Lara-Moreno, A., & Villaverde, J. (2020). Soil bioremediation by cyclodextrins. A review. International Journal of Pharmaceutics, 591(119943), 119943. https://doi.org/10.1016/j.ijpharm.2020.119943
Mulargia, L. I., Lemmens, E., Reyniers, S., Korompokis, K., Gebruers, K., Warren, F. J., & Delcour, J. A. (2022). The impact of cyclodextrins on the in vitro digestion of native and gelatinised starch and starch present in a sugar-snap cookie. Lebensmittel-Wissenschaft Und Technologie Food Science and Technology, 165(113748), 113748. https://doi.org/10.1016/j.lwt.2022.113748
Muñoz-Shugulí, C., Vidal, C. P., Cantero-López, P., & Lopez-Polo, J. (2021). Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends in Food Science & Technology, 108, 177–186. https://doi.org/10.1016/j.tifs.2020.12.020
Nicolaescu, O. E., Belu, I., Mocanu, A. G., Manda, V. C., Rău, G., Pîrvu, A. S., Ionescu, C., Ciulu-Costinescu, F., Popescu, M., & Ciocîlteu, M. V. (2025). Cyclodextrins: Enhancing drug delivery, solubility and bioavailability for modern therapeutics. Pharmaceutics, 17(3), 288. https://doi.org/10.3390/pharmaceutics17030288
Noël, S., Léger, B., Ponchel, A., Sadjadi, S., & Monflier, E. (2021). Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: a review. Environmental Chemistry Letters, 19(6), 4327–4348. https://doi.org/10.1007/s10311-021-01298-5
Ping, L., Bin, L., Zhe, Z., Feng, W., & Nan-sheng, D. (2003). Formation of the inclusion complex of Orange II with β-Cyclodextrin and its photostability. Wuhan University Journal of Natural Sciences, 8(4), 1147–1152. https://doi.org/10.1007/bf02903689
Polyakov, N. E., Leshina, T. V., Konovalova, T. A., Hand, E. O., & Kispert, L. D. (2004). Inclusion complexes of carotenoids with cyclodextrins: 1H NMR, EPR, and optical studies. Free Radical Biology & Medicine, 36(7), 872–880. https://doi.org/10.1016/j.freeradbiomed.2003.12.009
Purpura, M., Lowery, R. P., Wilson, J. M., Mannan, H., Münch, G., & Razmovski-Naumovski, V. (2018). Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. European Journal of Nutrition, 57(3), 929–938. https://doi.org/10.1007/s00394-016-1376-9
Rakmai, J., Cheirsilp, B., Mejuto, J. C., Simal-Gándara, J., & Torrado-Agrasar, A. (2018). Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Industrial Crops and Products, 111, 219–225. https://doi.org/10.1016/j.indcrop.2017.10.027
Rozsnyai, M., Plopeanu, G., & Marinescu, M. (2023). Preliminary data regarding bioremediation of soils polluted with petroleum hydrocarbons by using cyclodextrins. "Annals of the University of Craiova - Agriculture Montanology Cadastre Series ", 52(1), 442–447. https://doi.org/10.52846/aamc.v52i1.1373
Saffarionpour, S., & Diosady, L. L. (2025). Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Delivery and Translational Research, 15(1), 26–65. https://doi.org/10.1007/s13346-024-01586-x
Samperio, C., Boyer, R., Eigel, W. N., 3rd, Holland, K. W., McKinney, J. S., O’Keefe, S. F., Smith, R., & Marcy, J. E. (2010). Enhancement of plant essential oils’ aqueous solubility and stability using alpha and beta cyclodextrin. Journal of Agricultural and Food Chemistry, 58(24), 12950–12956. https://doi.org/10.1021/jf103275a
Shukla, S., Sagar, B., & Gupta, S. (2023). Application of cyclodextrin-based nanosponges in soil and aquifer bioremediation. In Nanosponges for Environmental Remediation (pp. 145–167). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-41077-2_7
Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K.-H., & Bhardwaj, N. (2021). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 417(128084), 128084. https://doi.org/10.1016/j.cej.2020.128084
Suvarna, V., Bore, B., Bhawar, C., & Mallya, R. (2022). Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomedecine & Pharmacotherapie Biomedicine & Pharmacotherapy, 149(112862), 112862. https://doi.org/10.1016/j.biopha.2022.112862
Szente, L., & Szejtli, J. (2004). Cyclodextrins as food ingredients. Trends in Food Science & Technology, 15(3–4), 137–142. https://doi.org/10.1016/j.tifs.2003.09.019
Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 98(5), 1743–1754. https://doi.org/10.1021/cr970022c
Uberti, F., Trotta, F., Pagliaro, P., Bisericaru, D. M., Cavalli, R., Ferrari, S., Penna, C., & Matencio, A. (2023). Developing new Cyclodextrin-based nanosponges complexes to improve vitamin D absorption in an in vitro study. International Journal of Molecular Sciences, 24(6), 5322. https://doi.org/10.3390/ijms24065322
Uekaji, Y., & Terao, K. (2019). Bioavailability enhancement of hydrophobic nutraceuticals using γ-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 93(1–2), 3–15. https://doi.org/10.1007/s10847-018-0856-3
Varan, G. (2023). Cyclodextrin in vaccines: Enhancing efficacy and stability. Future Pharmacology, 3(3), 597–611. https://doi.org/10.3390/futurepharmacol3030038
Villaverde, J., Maqueda, C., Undabeytia, T., & Morillo, E. (2007). Effect of various cyclodextrins on photodegradation of a hydrophobic herbicide in aqueous suspensions of different soil colloidal components. Chemosphere, 69(4), 575–584. https://doi.org/10.1016/j.chemosphere.2007.03.022
Wang, H., Hu, L., Peng, L., Du, J., Lan, M., Cheng, Y., Ma, L., & Zhang, Y. (2022). Dual encapsulation of β-carotene by β-cyclodextrin and chitosan for 3D printing application. Food Chemistry, 378(132088), 132088. https://doi.org/10.1016/j.foodchem.2022.132088
Wüpper, S., Lüersen, K., & Rimbach, G. (2021). Cyclodextrins, natural compounds, and plant bioactives-A nutritional perspective. Biomolecules, 11(3), 401. https://doi.org/10.3390/biom11030401
Xu, X., Peng, S., Bao, G., Zhang, H., & Yin, C. (2021). β-cyclodextrin inclusion complexes with vitamin A and its esters: A comparative experimental and molecular modeling study. Journal of Molecular Structure, 1223(129001), 129001. https://doi.org/10.1016/j.molstruc.2020.129001
Yadav, M., Thakore, S., & Jadeja, R. (2022). A review on remediation technologies using functionalized Cyclodextrin. Environmental Science and Pollution Research International, 29(1), 236–250. https://doi.org/10.1007/s11356-021-15887-y
Yamamoto, K., Tanikawa, T., Tomita, J., Ishida, Y., Nakata, D., Terao, K., & Inoue, Y. (2023). Characterization, preparation, and promotion of plant growth of 1,3-diphenylurea/β-cyclodextrin derivatives inclusion complexes. ACS Omega, 8(38), 34972–34981. https://doi.org/10.1021/acsomega.3c04428
Yildiz, Z. I., Topuz, F., Kilic, M. E., Durgun, E., & Uyar, T. (2023). Encapsulation of antioxidant beta-carotene by cyclodextrin complex electrospun nanofibers: Solubilization and stabilization of beta-carotene by cyclodextrins. Food Chemistry, 423(136284), 136284. https://doi.org/10.1016/j.foodchem.2023.136284
Zhang, Z., Liang, H., Chai, Z., & Wang, T. (2024). Preparation of β-cyclodextrin (CD)/flavour CD powder and its application on flavour improvement of regular coffee. Foods (Basel, Switzerland), 13(15), 2359. https://doi.org/10.3390/foods13152359
Zhou, J., Jia, J., He, J., Li, J., & Cai, J. (2022). Cyclodextrin inclusion complexes and their application in food safety analysis: Recent developments and future prospects. Foods (Basel, Switzerland), 11(23), 3871. https://doi.org/10.3390/foods11233871
Zhou, S., Wang, L., Zhang, A., Lin, K., & Liu, W. (2008). Preparation, stabilization, and bioefficacy of beta-cyclodextrin inclusion compounds of chloramidophos. Journal of Agricultural and Food Chemistry, 56(8), 2708–2713. https://doi.org/10.1021/jf703635p
Zuo, J., Yan, H., Lan, R., Cai, J., Lin, Y., Wu, W., Chen, H., Hao, L., Zhou, X., & Zhou, H. (2024). An enzyme-responsive core-double shell structured nano pesticide delivery system for improving the UV stability of emamectin benzoate (EB). Industrial Crops and Products, 213(118464), 118464. https://doi.org/10.1016/j.indcrop.2024.118464

Authors

Sankara Rao Miditana
sraom90@gmail.com (Primary Contact)
Winnie Teja Dokka
A. Ramesh Babu
Satheesh Ampolu
Neha Agarwal
Nalini Simma
Author Biographies

Winnie Teja Dokka, Department of Chemistry, Government Degree College, Chintalapudi, Andhra Pradesh-534460

Department of Chemistry, Assistprofessor of Chemistry 

A. Ramesh Babu, Department of Chemistry, SVA Government College(M), Srikalahasti, Andhra Pradesh-517644

Department of Chemistry, Assistant Professor of Chemistry

Satheesh Ampolu, Department of Chemistry, Centurion University of Technology and Management, Vizianagaram, Andhra Pradesh

Department of Chemistry, Associative Professor in Chemistry

Neha Agarwal, Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow

Department of Chemistry, Assistant Professor in Chemistry

Miditana, S. R., Dokka, W. T. ., Ramesh Babu, A. ., Ampolu, S. ., Agarwal, N., & Simma, N. (2025). Cyclodextrins for UV Protection in Food, Beverages, and Agricultural Products: A Comprehensive Review . The North African Journal of Food and Nutrition Research, 9(20), 219–235. https://doi.org/10.51745/najfnr.9.20.219-235

Article Details

Received 2024-11-01
Accepted 2025-10-03
Published 2025-10-27