Olive stone as a sustainable agricultural by-product: Valorization pathways and prospects in food and feed Industries

Ayla Mumcu (1) , Aişe Deliboran (2)
(1) Olive Research Institute, Universite Cd. No:43 35100, Izmir , Turkey
(2) Olive Research Institute, Universite Cd. No:43 35100, Izmir , Turkey

Abstract

Background: Olive stone (OS) has emerged as a promising by-product with potential applications in food and feed formulations, owing to its unique properties.  Despite growing interest in recent years, research dedicated to the comprehensive evaluation of OS remains limited.


Aim: This review aimed to elucidate the structure, physical and chemical properties of OS, provide an overview of its diverse application areas, and highlight its potential utilization in food and feed formulations through case studies and recent advancements.


Methods: A systematic literature search was conducted using prominent databases, including Google Scholar, Web of Science, PubMed and Scopus, with a focus on studies published in recent years. The search strategy employed keywords such as olive, olive by-products, olive stone composition, valorization areas, use of agricultural wastes in food. Relevant publications in English or Turkish were considered, resulting in a reference list of 97 articles that were critically reviewed and cited.


Results: OSs are a significant by-product generated during the olive oil extraction and pitted table olive production, constituting approximately 18-22% of the olive fruit. OS possesses a lignocellulosic composed primarily of hemicellulose, cellulose and lignin. Although its current predominant use is as fuel due to its high calorific value, OS exhibits potential for diverse applications owing to its rich composition of fat, protein, bioactive phenolic compounds and dietary fiber. Potential valorization pathways include activated carbon production, oil extraction, furfural synthesis, plastic filling material, cosmetic formulations, biosorbents, resin production, and animal nutritional supplementation. Recent studies have increasingly explored the use of OSs as a functional food ingredient, with promising results demonstrating its efficacy as an antioxidant, nutraceutical and thickening agent in food formulations.


Conclusion: This review underscores the multifaceted potential of OS, particularly in food and feed applications. The valorization of OS aligns with sustainable waste management practices and offers innovative opportunities for enhancing food and feed formulations.


Keywords: Olive, olive stone, waste management, waste valorization, agricultural by-product

Full text article

Generated from XML file

References

Ahmad, N., Anwar, F., Zuo, Y., Aslam, F., Shahid, M., Abbas, A., Farhat, L. B., H. Al-Mijalli, S., & Iqbal, M. (2022). Wild olive fruits: Phenolics profiling, antioxidants, antimicrobial, thrombolytic and haemolytic activities. Arabian Journal of Chemistry, 15(12), 104241. https://doi.org/10.1016/j.arabjc.2022.104241
Alché, J. D., Jiménez-López, J. C., Wang, W., Castro-López, A. J., & Rodríguez-García, M. I. (2006). Biochemical characterization and cellular localization of 11S type storage proteins in olive (Olea europaea L.) seeds. Journal of Agricultural and Food Chemistry, 54(15), 5562–5570. https://doi.org/10.1021/jf060203s
Asimakidou, T., & Chrissafis, K. (2022). Thermal behavior and pyrolysis kinetics of olive stone residue. Journal of Thermal Analysis and Calorimetry, 147(16), 9045–9054. https://doi.org/10.1007/s10973-021-11163-w
Aziz, A., Elandaloussi, E. H., Belhalfaoui, B., Ouali, M. S., & De Ménorval, L. C. (2009). Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions. Colloids and Surfaces. B, Biointerfaces, 73(2), 192–198. https://doi.org/10.1016/j.colsurfb.2009.05.017
Badiu, D., Luque, R. & Rajendram, R. (2010). Chapter 123 – effect of olive oil on the skin V.R. Preedy, R.R. Watson (Eds.), Olives and Olive Oil in Health and Disease Prevention, Academic Press, San Diego (2010), pp. 1125-1132.
Bartolomei, M., Capriotti, A. L., Li, Y., Bollati, C., Li, J., Cerrato, A., Cecchi, L., Pugliese, R., Bellumori, M., Mulinacci, N., Laganà, A., Arnoldi, A., & Lammi, C. (2022). Exploitation of Olive (Olea europaea L.) seed proteins as upgraded source of bioactive peptides with multifunctional properties: Focus on antioxidant and dipeptidyl-dipeptidase-IV inhibitory activities, and glucagon-like peptide 1 improved modulation. Antioxidants (Basel, Switzerland), 11(9), 1730. https://doi.org/10.3390/antiox11091730
Batçıoğlu, K., Küçükbay, F., Alagöz, M. A., Günal, S., & Yilmaztekin, Y. (2023). Antioxidant and antithrombotic properties of fruit, leaf, and seed extracts of the Halhalı olive (Olea europaea L.) native to the Hatay region in Turkey. Health, 1, 3. https://doi.org/10.21603/2308-4057-2023-1-557
Ben Mansour, A., Porter, E. A., Kite, G. C., Simmonds, M. S. J., Abdelhedi, R., & Bouaziz, M. (2015). Phenolic profile characterization of Chemlali olive stones by liquid chromatography-ion trap mass spectrometry. Journal of Agricultural and Food Chemistry, 63(7), 1990–1995. https://doi.org/10.1021/acs.jafc.5b00353
Ben Saad, A., Tiss, M., Keskes, H., Chaari, A., Sakavitsi, M. E., Hamden, K., ... & Allouche, N. (2021). Antihyperlipidemic, Antihyperglycemic, and Liver Function Protection of Olea europaea var. Meski Stone and Seed Extracts: LC‐ESI‐HRMS‐Based Composition Analysis. Journal of Diabetes Research, 2021(1), 6659415. https://doi.org/10.1155/2021/6659415
Blázquez, G., Hernáinz, F., Calero, M., Martín-Lara, M. A., & Tenorio, G. (2009). The effect of pH on the biosorption of Cr (III) and Cr (VI) with olive stone. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 148(2–3), 473–479. https://doi.org/10.1016/j.cej.2008.09.026
Bölek, S. (2020a). Olive stone powder: A potential source of fiber and antioxidant and its effect on the rheological characteristics of biscuit dough and quality. Innovative Food Science & Emerging Technologies: IFSET: The Official Scientific Journal of the European Federation of Food Science and Technology, 64(102423), 102423. https://doi.org/10.1016/j.ifset.2020.102423
Bölek, S. (2020b). Utilization of olive stone as valuable source of bioactive molecules. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(3), 170-175. https://doi.org/10.17780/ksujes.749091
Caballero, J. A., Conesa, J. A., Font, R., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159–175. https://doi.org/10.1016/s0165-2370(97)00015-6
Carraro, L., Trocino, A., & Xiccato, G. (2005). Dietary supplementation with olive stone meal in growing rabbits. Italian Journal of Animal Science, 4(sup3), 88–90. https://doi.org/10.4081/ijas.2005.3s.88
Cedola, A., Cardinali, A., D’Antuono, I., Conte, A., & Del Nobile, M. A. (2020). Cereal foods fortified with by-products from the olive oil industry. Food Bioscience, 33(100490), 100490. https://doi.org/10.1016/j.fbio.2019.100490
Cecchi, L., Ghizzani, G., Bellumori, M., Lammi, C., Zanoni, B., & Mulinacci, N. (2023). Virgin Olive oil by-product valorization: An insight into the phenolic composition of Olive seed extracts from three cultivars as sources of bioactive molecules. Molecules (Basel, Switzerland), 28(6). https://doi.org/10.3390/molecules28062776
Chiofalo, B., Di Rosa, A. R., Lo Presti, V., Chiofalo, V., & Liotta, L. (2020). Effect of supplementation of herd diet with Olive cake on the composition profile of milk and on the composition, quality and sensory profile of cheeses made therefrom. Animals: An Open Access Journal from MDPI, 10(6), 977. https://doi.org/10.3390/ani10060977
Chiofalo, B., Liotta, L., Zumbo, A., & Chiofalo, V. (2004). Administration of olive cake for ewe feeding: effect on milk yield and composition. Small Ruminant Research: The Journal of the International Goat Association, 55(1–3), 169–176. https://doi.org/10.1016/j.smallrumres.2003.12.011
Coimbra, M. A., Rigby, N. M., Selvendran, R. R., & Waldron, K. W. (1995). Investigation of the occurrence of xylan-xyloglucan complexes in the cell walls of olive pulp (Olea europaea). Carbohydrate Polymers, 27(4), 277–284. https://doi.org/10.1016/0144-8617(95)00067-4
Conterno, L., Martinelli, F., Tamburini, M., Fava, F., Mancini, A., Sordo, M., Pindo, M., Martens, S., Masuero, D., Vrhovsek, U., Dal Lago, C., Ferrario, G., Morandini, M., & Tuohy, K. (2019). Measuring the impact of olive pomace enriched biscuits on the gut microbiota and its metabolic activity in mildly hypercholesterolaemic subjects. European Journal of Nutrition, 58(1), 63–81. https://doi.org/10.1007/s00394-017-1572-2
Cristofaro, D. (1997). A process for the realization of plates and panels consisting of exhausted olive husks of crushed olive stones and polypropylene, and derived product International Application Published Under The Patent Cooperation Treaty. International Publication Number: WO, 9/738834, International Application Number: PCT/IT96/00071.
Cuevas, M., García, J. F., Hodaifa, G., & Sánchez, S. (2015). Oligosaccharides and sugars production from olive stones by autohydrolysis and enzymatic hydrolysis. Industrial Crops and Products, 70, 100–106. https://doi.org/10.1016/j.indcrop.2015.03.011
D’Angeli, S., & Altamura, M. M. (2016). Unsaturated Lipids Change in Olive Tree Drupe and Seed during Fruit Development and in Response to Cold-Stress and Acclimation. International Journal of Molecular Sciences, 17(11), 1889. https://doi.org/10.3390/ijms17111889
Dal Bosco, A., Mourvaki, E., Cardinali, R., Servili, M., Sebastiani, B., Ruggeri, S., Mattioli, S., Taticchi, A., Esposto, S., & Castellini, C. (2012). Effect of dietary supplementation with olive pomaces on the performance and meat quality of growing rabbits. Meat Science, 92(4), 783–788. https://doi.org/10.1016/j.meatsci.2012.07.001
Demir F. (2021). Formation and characterization of mechanochemically generated free lignin radicals from olive seeds. Turkish Journal of Chemistry, 45(2), 282–294. https://doi.org/10.3906/kim-2008-19
Doménech, P., Duque, A., Higueras, I., Iglesias, R., & Manzanares, P. (2020). Biorefinery of the Olive Tree—Production of Sugars from Enzymatic Hydrolysis of Olive Stone Pretreated by Alkaline Extrusion. Energies, 13(17), 4517. https://doi.org/10.3390/en13174517
Duran, C. Y. (1985). Thermochemical properties of olive press cake-calorific value. Grasas Aceites (Seville);(Spain), 36(1).
El-Sheikh, A. H., Newman, A. P., Al-Daffaee, H. K., Phull, S., & Cresswell, N. (2004). Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques. Journal of Analytical and Applied Pyrolysis, 71(1), 151–164. https://doi.org/10.1016/s0165-2370(03)00061-5
Eromosele, C. O., & Eromosele, I. C. (2002). Fatty acid compositions of seed oils of Haematostaphis barteri and Ximenia americana. Bioresource Technology, 82(3), 303–304. https://doi.org/10.1016/s0960-8524(01)00179-1
Esteve, C., D'Amato, A., Marina, M. L., García, M. C., Citterio, A., & Righetti, P. G. (2012). Identification of olive (Olea europaea) seed and pulp proteins by nLC-MS/MS via combinatorial peptide ligand libraries. Journal of Proteomics, 75(8), 2396–2403. https://doi.org/10.1016/j.jprot.2012.02.020
Fernández-Bolaños, J., Felizón, B., Heredia, A., Rodríguez, R., Guillén, R., & Jiménez, A. (2001). Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresource technology, 79(1), 53–61. https://doi.org/10.1016/s0960-8524(01)00015-3
Fernandez-Hernandez, A., Mateos, R., Garcia-Mesa, J. A., Beltran, G., & Fernandez-Escobar, R. (2010). Determination of mineral elements in fresh olive fruits by flame atomic spectrometry. Revista de Investigacion Agraria Spanish Journal of Agricultural Research, 8(4), 1183–1190. https://doi.org/10.5424/sjar/2010084-1206
Galanakis, C. M. (2011). Olive fruit dietary fiber: components, recovery and applications. Trends in Food Science & Technology, 22(4), 175–184. https://doi.org/10.1016/j.tifs.2010.12.006
García Martín, J. F., Cuevas, M., Feng, C.-H., Álvarez Mateos, P., Torres García, M., & Sánchez, S. (2020). Energetic valorisation of Olive biomass: Olive-tree pruning, Olive stones and pomaces. Processes (Basel, Switzerland), 8(5), 511. https://doi.org/10.3390/pr8050511
Ghanbari, R., Anwar, F., Alkharfy, K. M., Gilani, A. H., & Saari, N. (2012). Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-a review. International Journal of Molecular Sciences, 13(3), 3291–3340. https://doi.org/10.3390/ijms13033291
Gomez-Martin, A., Chacartegui, R., Ramirez-Rico, J., & Martinez-Fernandez, J. (2018). Gomez-Martin, A., Chacartegui, R., Ramirez-Rico, J., & Martinez-Fernandez, J. (2018). Performance improvement in olive stone’s combustion from a previous carbonization transformation. Fuel (London, England), 228, 254–262. https://doi.org/10.1016/j.fuel.2018.04.127
González, J. F., González-Garcı́a, C. M., Ramiro, A., González, J., Sabio, E., Gañán, J., & Rodrı́guez, M. A. (2004). Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass & Bioenergy, 27(2), 145–154. https://doi.org/10.1016/j.biombioe.2004.01.004
Gouvinhas, I., Garcia, J., Granato, D., & Barros, A. (2022). Seed Phytochemical Profiling of Three Olive Cultivars, Antioxidant Capacity, Enzymatic Inhibition, and Effects on Human Neuroblastoma Cells (SH-SY5Y). Molecules (Basel, Switzerland), 27(16), 5057. https://doi.org/10.3390/molecules27165057
Gülel, Ş., & Güvenilir, Y. (2024). Olive stone powder filled bio-based polyamide 5.6 biocomposites: biodegradation in natural soil and mechanical properties. Polymer Bulletin (Berlin, Germany). https://doi.org/10.1007/s00289-024-05388-6
Hakala, K., Vuoristo, M., Luukkonen, P., Järvinen, H. J., & Miettinen, T. A. (1997). Impaired absorption of cholesterol and bile acids in patients with an ileoanal anastomosis. Gut, 41(6), 771–777. https://doi.org/10.1136/gut.41.6.771
Heredia-Moreno, A., Guillén-Bejarano, R., Fernández-Bolaños, J., & Rivas-Moreno, M. (1987). Olive stones as a source of fermentable sugars. Biomass, 14(2), 143–148. https://doi.org/10.1016/0144-4565(87)90016-3
Iannaccone, M., Ianni, A., Ramazzotti, S., Grotta, L., Marone, E., Cichelli, A., & Martino, G. (2019). Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens. Animals: an open access journal from MDPI, 9(7), 427. https://doi.org/10.3390/ani9070427
International Olive Council. (2024a). https://www.internationaloliveoil.org/world-market-of-olive-oil-and-table-olives-data-from-december-2024/
International Olive Council. (2024b). https://www.internationaloliveoil.org/wp-content/uploads/2023/12/IOC-Olive-Oil-Dashboard.html#production-1
Jahanbakhshi, R., & Ansari, S. (2020). Physicochemical properties of sponge cake fortified by olive stone powder. International Journal of Food Science, 2020, Article 1493638. https://doi.org/10.1155/2020/1493638
Kaplan, M., & Arıhan, S. K. (2012). A healing source of antiquity to the present: usage of olive and olive oil in folk medicine. The Journal of the Faculty of Languages and History-Geography, 52(2), 1-15.
Kiritsakis, A. K. (1998). Olive oil: from the tree to the table. Food & Nutrition Press.
Lin, S., Chi, W., Hu, J., Pan, Q., Zheng, B., & Zeng, S. (2017). Sensory and nutritional properties of Chinese Olive pomace based high fibre biscuit. Emirates Journal of Food and Agriculture, 495. https://doi.org/10.9755/ejfa.2016-12-1908
Luaces, P., Pérez, A. G., & Sanz, C. (2003). Role of olive seed in the biogenesis of virgin olive oil aroma. Journal of Agricultural and Food Chemistry, 51(16), 4741–4745. https://doi.org/10.1021/jf034200g
Luciano, G., Pauselli, M., Servili, M., Mourvaki, E., Serra, A., Monahan, F. J., Lanza, M., Priolo, A., Zinnai, A., & Mele, M. (2013). Dietary olive cake reduces the oxidation of lipids, including cholesterol, in lamb meat enriched in polyunsaturated fatty acids. Meat Science, 93(3), 703–714. https://doi.org/10.1016/j.meatsci.2012.11.033
Maestri, D., Barrionuevo, D., Bodoira, R., Zafra, A., Jiménez-López, J., & Alché, J. D. (2019). Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. Journal of Food Science and Technology, 56(9), 4359–4370. https://doi.org/10.1007/s13197-019-03904-5
Maestro-Durán, R., León Cabello, R., Ruíz-Gutiérrez, V., Fiestas, P., & Vázquez-Roncero, A. (1994). Bitter phenolic glucosides from seeds of olive (Olea europaea). Grasas y Aceites, 45(5), 332–335. https://doi.org/10.3989/gya.1994.v45.i5.1028
Malheiro, R., Casal, S., Sousa, A., de Pinho, P. G., Peres, A. M., Dias, L. G., Bento, A., & Pereira, J. A. (2012). Effect of cultivar on sensory characteristics, chemical composition, and nutritional value of stoned green table olives. Food and Bioprocess Technology, 5(5), 1733–1742. https://doi.org/10.1007/s11947-011-0567-x
Mallamaci, R., Budriesi, R., Clodoveo, M. L., Biotti, G., Micucci, M., Ragusa, A., Curci, F., Muraglia, M., Corbo, F., & Franchini, C. (2021). Olive Tree in Circular Economy as a Source of Secondary Metabolites Active for Human and Animal Health Beyond Oxidative Stress and Inflammation. Molecules (Basel, Switzerland), 26(4), 1072. https://doi.org/10.3390/molecules26041072
Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23–28. https://doi.org/10.1016/j.indcrop.2005.03.001
Mateo, S., Puentes, J. G., Sánchez, S., & Moya, A. J. (2013). Oligosaccharides and monomeric carbohydrates production from olive tree pruning biomass. Carbohydrate polymers, 93(2), 416–423. https://doi.org/10.1016/j.carbpol.2012.12.024
Mediavilla, I., Barro, R., Borjabad, E., Peña, D., & Fernández, M. J. (2020). Quality of olive stone as a fuel: Influence of oil content on combustion process. Renewable Energy, 160, 374–384. https://doi.org/10.1016/j.renene.2020.07.001
Molina-Sabio, M., Sánchez-Montero, M. J., Juarez-Galan, J. M., Salvador, F., Rodríguez-Reinoso, F., & Salvador, A. (2006). Development of porosity in a char during reaction with steam or supercritical water. The journal of physical chemistry. B, 110(25), 12360–12364. https://doi.org/10.1021/jp0614289
Montané, D. (2002). High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass & Bioenergy, 22(4), 295–304. https://doi.org/10.1016/s0961-9534(02)00007-7
Nasopoulou, C., Gogaki, V., Stamatakis, G., Papaharisis, L., Demopoulos, C. A., & Zabetakis, I. (2013). Evaluation of the in vitro anti-atherogenic properties of lipid fractions of olive pomace, olive pomace enriched fish feed and gilthead sea bream (Sparus aurata) fed with olive pomace enriched fish feed. Marine Drugs, 11(10), 3676–3688. https://doi.org/10.3390/md11103676
Nasopoulou, C., Smith, T., Detopoulou, M., Tsikrika, C., Papaharisis, L., Barkas, D., & Zabetakis, I. (2014). Structural elucidation of olive pomace fed sea bass (Dicentrarchus labrax) polar lipids with cardioprotective activities. Food Chemistry, 145, 1097–1105. https://doi.org/10.1016/j.foodchem.2013.08.091
Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Würtele, G., Spiegelhalder, B., & Bartsch, H. (2000). Olive-oil consumption and health: the possible role of antioxidants. The Lancet. Oncology, 1, 107–112. https://doi.org/10.1016/s1470-2045(00)00015-2
Pardalis, N., Xanthopoulou, E., Zamboulis, A., & Bikiaris, D. N. (2024). Olive stone as a filler for recycled high-density polyethylene: A promising valorization of solid wastes from olive oil industry. Sustainable Chemistry for the Environment, 6(100090), 100090. https://doi.org/10.1016/j.scenv.2024.100090
Pintado, T., Muñoz-González, I., Salvador, M., Ruiz-Capillas, C., & Herrero, A. M. (2021). Phenolic compounds in emulsion gel-based delivery systems applied as animal fat replacers in frankfurters: Physico-chemical, structural and microbiological approach. Food Chemistry, 340, 128095. https://doi.org/10.1016/j.foodchem.2020.128095
Pütün, A. E., Uzun, B. B., Apaydin, E., & Pütün, E. (2005). Bio-oil from olive oil industry wastes: Pyrolysis of olive residue under different conditions. Fuel Processing Technology, 87(1), 25–32. https://doi.org/10.1016/j.fuproc.2005.04.003
Rahman, M. F. A., Elhawary, E., Hafez, A. M., Çapanoğlu, E., Fang, Y., & Farag, M. A. (2024). How does olive seed chemistry, health benefits and action mechanisms compare to its fruit oil? A comprehensive review for valorization purposes and maximizing its health benefits. Food Bioscience, 104017. https://doi.org/10.1016/j.fbio.2024.104017
Ranalli, A., Pollastri, L., Contento, S., Di Loreto, G., Iannucci, E., Lucera, L., & Russi, F. (2002). Acylglycerol and fatty acid components of pulp, seed, and whole olive fruit oils. Their use to characterize fruit variety by chemometrics. Journal of Agricultural and Food Chemistry, 50(13), 3775–3779. https://doi.org/10.1021/jf011506j
Reboredo-Rodríguez, P., González-Barreiro, C., Cancho-Grande, B., & Simal-Gándara, J. (2013). Aroma biogenesis and distribution between olive pulps and seeds with identification of aroma trends among cultivars. Food chemistry, 141(1), 637–643. https://doi.org/10.1016/j.foodchem.2013.02.095
Riera, F. A., Alvarez, R., & Coca, J. (1991). Humic fertilizers by oxiammoniation of hydrolyzed olive pits residues. Fertilizer Research, 28(3), 341–348. https://doi.org/10.1007/bf01054335
Rios, R. V. R. A., Martínez-Escandell, M., Molina-Sabio, M., & Rodríguez-Reinoso, F. (2006). Carbon foam prepared by pyrolysis of olive stones under steam. Carbon, 44(8), 1448–1454. https://doi.org/10.1016/j.carbon.2005.11.028
Rodríguez, G., Lama, A., Rodríguez, R., Jiménez, A., Guillén, R., & Fernández-Bolaños, J. (2008). Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technology, 99(13), 5261–5269. https://doi.org/10.1016/j.biortech.2007.11.027
Ruiz, E., Romero-García, J. M., Romero, I., Manzanares, P., Negro, M. J., & Castro, E. (2017). Olive‐derived biomass as a source of energy and chemicals: Olive-derived biomass as a source of energy and chemicals. Biofuels, Bioproducts & Biorefining: Biofpr, 11(6), 1077–1094. https://doi.org/10.1002/bbb.1812
Ryan, D., Prenzler, P. D., Lavee, S., Antolovich, M., & Robards, K. (2003). Quantitative changes in phenolic content during physiological development of the olive (Olea europaea) cultivar Hardy's Mammoth. Journal of Agricultural and Food Chemistry, 51(9), 2532–2538. https://doi.org/10.1021/jf0261351
Sakouhi, F., Harrabi, S., Absalon, C., Sbei, K., Boukhchina, S., & Kallel, H. (2008). α-Tocopherol and fatty acids contents of some Tunisian table olives (Olea europea L.): Changes in their composition during ripening and processing. Food Chemistry, 108(3), 833–839. https://doi.org/10.1016/j.foodchem.2007.11.043
Saleh, M., Cuevas, M., García, J. F., & Sánchez, S. (2014). Valorization of olive stones for xylitol and ethanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochemical Engineering Journal, 90, 286–293. https://doi.org/10.1016/j.bej.2014.06.023
Samba Garba, M., & Bouderbala, S. (2022). Olive cake reduces obesity by decreasing epididymal adipocyte size, inhibiting oxidative stress and pancreatic lipase, in rat fed high fat diet. Nutrition & Food Science, 52(8), 1206–1220. https://doi.org/10.1108/nfs-10-2021-0319
Servili, M., Baldioli, M., Selvaggini, R., Macchioni, A., & Montedoro, G. (1999). Phenolic compounds of olive fruit: one- and two-dimensional nuclear magnetic resonance characterization of Nüzhenide and its distribution in the constitutive parts of fruit. Journal of Agricultural and Food Chemistry, 47(1), 12–18. https://doi.org/10.1021/jf9806210
Silva, S., Gomes, L., Leitão, F., Bronze, M., Coelho, A. V., & Boas, L. V. (2010). Secoiridoids in olive seed: characterization of nüzhenide and 11-methyl oleosides by liquid chromatography with diode array and mass spectrometry. Grasas y Aceites, 61(2), 157–164. https://doi.org/10.3989/gya.087309
Simonato, B., Trevisan, S., Tolve, R., Favati, F., & Pasini, G. (2019). Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. Lebensmittel-Wissenschaft Und Technologie Food Science and Technology, 114(108368), 108368. https://doi.org/10.1016/j.lwt.2019.108368
Sioriki, E., Smith, T. K., Demopoulos, C. A., & Zabetakis, I. (2016). Structure and cardioprotective activities of polar lipids of olive pomace, olive pomace-enriched fish feed and olive pomace fed gilthead sea bream (Sparus aurata). Food Research International (Ottawa, Ont.), 83, 143–151. https://doi.org/10.1016/j.foodres.2016.03.015
Siracusa, G., La Rosa, A. D., Siracusa, V., & Trovato, M. (2001). Eco-compatible use of olive husk as filler in thermoplastic composites. Journal of Polymers and the Environment, 9(4), 157–161. https://doi.org/10.1023/A:1014830125518
Skoulou, V., Swiderski, A., Yang, W., & Zabaniotou, A. (2009). Process characteristics and products of olive kernel high temperature steam gasification (HTSG). Bioresource Technology, 100(8), 2444–2451. https://doi.org/10.1016/j.biortech.2008.11.021
Spahis, N., Addoun, A., Mahmoudi, H., & Ghaffour, N. (2008). Purification of water by activated carbon prepared from olive stones. Desalination, 222(1–3), 519–527. https://doi.org/10.1016/j.desal.2007.01.150
Stavropoulos, G. G., & Zabaniotou, A. A. (2005). Production and characterization of activated carbons from olive-seed waste residue. Microporous and Mesoporous Materials: The Official Journal of the International Zeolite Association, 82(1–2), 79–85. https://doi.org/10.1016/j.micromeso.2005.03.009
Tripoli, E., Giammanco, M., Tabacchi, G., Di Majo, D., Giammanco, S., & La Guardia, M. (2005). The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutrition Research Reviews, 18(1), 98–112. https://doi.org/10.1079/NRR200495
Tzamaloukas, O., Neofytou, M. C., & Simitzis, P. E. (2021). Application of Olive By-Products in Livestock with Emphasis on Small Ruminants: Implications on Rumen Function, Growth Performance, Milk and Meat Quality. Animals: An Open Access Journal from MDPI, 11(2), 531. https://doi.org/10.3390/ani11020531
Ubago-Pérez, R., Carrasco-Marín, F., Fairén-Jiménez, D., & Moreno-Castilla, C. (2006). Granular and monolithic activated carbons from KOH-activation of olive stones. Microporous and Mesoporous Materials: The Official Journal of the International Zeolite Association, 92(1–3), 64–70. https://doi.org/10.1016/j.micromeso.2006.01.002
Uğurlu, M., Gürses, A., & Açıkyıldız, M. (2008). Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous and Mesoporous Materials: The Official Journal of the International Zeolite Association, 111(1–3), 228–235. https://doi.org/10.1016/j.micromeso.2007.07.034
Vaca-Garcia, C., & Borredon, M. E. (1999). Solvent-free fatty acylation of cellulose and lignocellulosic wastes. Part 2: reactions with fatty acids1The first paper of this series is: Thiebaud, S., Borredon, M.E., 1995. Solvent-free wood esterification with fatty acid chlorides. Bioresour. Technol., 52, 169–173.1. Bioresource Technology, 70(2), 135–142. https://doi.org/10.1016/s0960-8524(99)00034-6
Valvez, S., Maceiras, A., Santos, P., & Reis, P. N. B. (2021). Olive Stones as Filler for Polymer-Based Composites: A Review. Materials (Basel, Switzerland), 14(4), 845. https://doi.org/10.3390/ma14040845
Vargas-Bello-Pérez, E., Vera, R. R., Aguilar, C., Lira, R., Peña, I., & Fernández, J. (2013). Feeding olive cake to ewes improves fatty acid profile of milk and cheese. Animal Feed Science and Technology, 184(1–4), 94–99. https://doi.org/10.1016/j.anifeedsci.2013.05.016
Vásquez-Villanueva, R., Muñoz-Moreno, L., José Carmena, M., Luisa Marina, M., & Concepción García, M. (2018). In vitro antitumor and hypotensive activity of peptides from olive seeds. Journal of Functional Foods, 42, 177–184. https://doi.org/10.1016/j.jff.2017.12.062
Veciana-Galindo, C., Cortés-Castell, E., Torró-Montell, L., Palazón-Bru, A., Sirvent-Segura, E., Rizo-Baeza, M. M., & Gil-Guillén, V. F. (2015). Anti-adipogenic activity of an olive seed extract in mouse fibroblasts. Nutricion Hospitalaria, 31(6), 2747–2751. https://doi.org/10.3305/nh.2015.31.6.8997
Visioli, F., Poli, A., & Gall, C. (2002). Antioxidant and other biological activities of phenols from olives and olive oil. Medicinal Research Reviews, 22(1), 65–75. https://doi.org/10.1002/med.1028
Vitolo, S., Petarca, L., & Bresci, B. (1999). Treatment of olive oil industry wastes. Bioresource Technology, 67(2), 129–137. https://doi.org/10.1016/s0960-8524(98)00110-2

Authors

Ayla Mumcu
ayla.mumcu@tarimorman.gov.tr (Primary Contact)
Aişe Deliboran
Mumcu, A., & Deliboran, A. (2025). Olive stone as a sustainable agricultural by-product: Valorization pathways and prospects in food and feed Industries. The North African Journal of Food and Nutrition Research, 9(SI), S1-S17. https://doi.org/10.51745/najfnr.9.SI.S1-S17

Article Details

Received 2024-09-16
Accepted 2024-12-21
Published 2025-02-11