Immune-stimulating and antioxidant properties of a traditional Algerian plant combination: Date fruit <em>(Phoenix dactylifera)</em> and Fenugreek seeds <em>(Trigonella foenum-graecum)</em>
Abstract
Background: Combinatory therapy involving medicinal plants utilizes blends of different species to enhance therapeutic efficacy, increase potency, and minimize adverse effects. This approach leverages the synergistic interactions of plant-derived bioactive compounds, offering a natural and holistic strategy for addressing various health conditions.
Aims: This study aimed to evaluate the effects of a traditional Algerian combination of date fruit (Phoenix dactylifera) and fenugreek seeds (Trigonella foenum-graecum) on phagocytic activity and hepatic glutathione (GSH) levels.
Materials and Methods: Phagocytic activity was measured using the carbon clearance rate test, while hepatic glutathione levels were determined spectrophotometrically from the liver homogenates.
Results: The results demonstrated that both phagocytic activity and GSH levels were significantly enhanced in animals treated with the plant combination (p < 0.001). The carbon clearance rate was significantly faster in mice receiving the combined treatment (FG “Fenugreek” / PD “Phoenix dactylifera”: 14.66 ± 4.143) compared to NaCl control group (49.77 ± 16.98). Additionally, the phagocytic index was significantly higher in the FG / PD group (7.128 ± 0.823) compared to groups treated with either fenugreek alone (FG: 4.082 ± 0.306) or date fruit alone (PD: 4.87 ± 0.608). Hepatic GSH levels were also significantly elevated in the FG / PD group compared to the other groups (p = 0.040).
Conclusions: The combination of date fruit and fenugreek seeds exhibits a synergic effect, enhancing immune system activity and antioxidant capacity. These findings suggest its potential for the development of novel, naturally derived therapeutic agents.
Keywords: Phagocytic activity, date fruit, fenugreek seeds, GSH, combination therapy.
Full text article
References
Alanazi, H. H., Elasbali, A. M., Alanazi, M. K., & El Azab, E. F. (2023). Medicinal Herbs: Promising Immunomodulators for the Treatment of Infectious Diseases. Molecules (Basel, Switzerland), 28(24), 8045. https://doi.org/10.3390/molecules28248045
Alkahtani, J., Elshikh, M. S., Dwiningsih, Y., Ahalliya Rathi, M., Sathya, R., & Vijayaraghavan, P. (2022). In-vitro antidepressant property of methanol extract of Bacopa monnieri. Journal of King Saud University. Science, 34(8), 102299. https://doi.org/10.1016/j.jksus.2022.102299
Alkhoori, M. A., Shen-Yee Kong, A., Aljaafari, M. N., Abushelaib, A., Erin Lim, S. H., Cheng, W. H., & Lai, K. S. (2022). Biochemical Composition and Biological Activities of Date Palm (Phoenix dactylifera L.) Seeds: A Review. Biomolecules, 12(1626). https://doi.org/10.3390/biom12111626
Almatroodi, S. A., Almatroudi, A., Alsahli, M. A., & Rahmani, A. H. (2021). Fenugreek (Trigonella Foenum-Graecum) and its active compounds: A Review of its effects on human health through modulating biological activities. Pharmacognosy Journal, 13(3), 813–821. https://doi.org/10.5530/pj.2021.13.103
Al-Mssallem, M. Q., Alqurashi, R. M., & Al-Khayri, J. M. (2020). Bioactive Compounds of Date Palm (Phoenix dactylifera L.). In Reference Series in Phytochemistry (pp. 91–105). Springer International Publishing. https://doi.org/10.1007/978-3-030-06120-3_6-1
Bendiab, H. C., Djebli, N., Kara, Y., Uçar, M., & Kolayli, S. (2021). An investigation of Algerian dates (Phoenix dactylifera L.); Antioxidant, anti-inflammatory properties and phenolic compositons H. Emirates Journal of Food and Agriculture, 629. https://doi.org/10.9755/ejfa.2021.v33.i8.2737
Bentrad, N., & Hamida-Ferhat, A. (2020). Date palm fruit (Phoenix dactylifera): Nutritional values and potential benefits on health. In The Mediterranean Diet (pp. 239–255). Elsevier. https://doi.org/10.1016/b978-0-12-818649-7.00022-9
Bouhlali, E. D. T., Derouich, M., Hmidani, A., Bourkhis, B., Khouya, T., Filali-Zegzouti, Y., & Alem, C. (2021). Protective Effect of Phoenix dactylifera L. Seeds against Paracetamol-Induced Hepatotoxicity in Rats: A Comparison with Vitamin C. The Scientific World Journal, 2021, 6618273. https://doi.org/10.1155/2021/6618273
Chergui, D., Akretche-Kelfat, S., Lamoudi, L., Al-Rshaidat, M., Boudjelal, F., & Ait-Amar, H. (2021). Optimization of citric acid production by Aspergillus niger using two downgraded Algerian date varieties. Saudi Journal of Biological Sciences, 28(12), 7134–7141. https://doi.org/10.1016/j.sjbs.2021.08.013)
Choe, H., Yun, I., & Kim, Y. (2022). Effect of herbal extracts and supplements mixture on alcohol metabolism in Sprague Dawley-rats. Journal of Food Science and Technology, 59(12), 4915–4923. https://doi.org/10.1007/s13197-022-05580-4
Dhull, S. B., Bamal, P., & Kumar, M. (2022). Fenugreek (Trigonella foenum graecum) gum: A functional ingredient with promising properties and applications in food and pharmaceuticals-A review. Legume Science, 5(176), 1–14. https://doi.org/10.1002/leg3.176
Dillasamola, D., Aldi, Y., & Fakhri, M. (2018). Immunomodulatory effect test from moringa leaf extract (Moringa oleifera L.) with carbon clearance method in male white mice. Asian Journal of Pharmaceutical and Clinical Research, 11(9), 241–245. https://doi.org/10.22159/ajpcr.2018.v11i9.26703
Donkor, M. N., Donkor, A. M., & Mosobil, R. (2023). Combination therapy: synergism among three plant extracts against selected pathogens. BMC Research Notes, 16(1), 83. https://doi.org/10.1186/s13104-023-06354-7
Essa, M. M., Akbar, M., & Khan, M. A. S. (2016). Beneficial effects of date palm fruits on neurodegenerative diseases. Neural Regeneration Research, 11(7), 1071–1072. https://doi.org/10.4103/1673-5374.187032
Ezeh, G. C., Udeh, N. E., Ozioko, C. A., Onoja, S. O., Eze, R. E., Omeh, Y. N., … Anaga, A. O. (2021). Acute and sub-acute toxicity profile of methanol extract of Hura crepitans leaf on Wistar rats. Notulae Scientia Biologicae, 13(2), 10939. https://doi.org/10.15835/nsb13210939
Golubkova, A., Leiva, T., Snyder, K., Schlegel, C., Bonvicino. S. M., Agbaga, M-P., Brush, R. S., Hansen, J. M., Vitiello, P. F., & Hunter, C. J. (2023). Response of the Glutathione (GSH) Antioxidant Defense System to Oxidative Injury in Necrotizing Enterocolitis. Antioxidants, 12(1385), 1–16. https://doi.org/10.3390/antiox12071385
Guo, H., Chen, J., Yuan, X., Zhang, J., Wang, J., Yao, J., & Ge, H. (2023). The combined effect of a novel formula of herbal extracts on bacterial infection and immune response in Micropterus salmoides. Frontiers in Microbiology, 14, 1185234. https://doi.org/10.3389/fmicb.2023.1185234
Haenen, G.R.M.M, & Bast, A. (2014). Glutathione revisited: a better scavenger than previously thought. Frontiers in Pharmacology, 5, 1–5. https://doi.org/10.3389/fphar.2014.00260
Harkat, H., Bousba, R., Benincasa, C., Atrouz, K., Gültekin-Özgüven, M., Altunta, Ü., Demircan, E., Zahran, H. A., & Özçelik, B. (2022). Assessment of biochemical composition and antioxidant properties of Algerian date palm (Phoenix dactylifera L.) seed oil. Plants, 11(381). https://doi.org/10.3390/plants11030381
Messaoudi, A., Dekmouche, M., Rahmani, Z., & Bensaci, C. (2021). Phenolic profile, Antioxidant potential of date (Phoenix dactylifera Var. Degla Baidha and Deglet-Nour) seeds from Debila region (Oued Souf, Algeria). Asian Journal of Research in Chemistry, 14(1), 1–5. https://doi.org/10.5958/0974-4150.2021.00006.7
Nalbantova, V., Benbassat, N., & Delattre, C. (2023). Comparative study of the chemical composition of Trigonella foenum-graecum L. essential oil. Pharmacia, 70(1), 85–89. https://doi.org/10.3897/pharmacia.70.e98413
Nikiema, W. A., Ouédraogo, M., Ouédraogo, W. P., Fofana, S., Ouédraogo, B. H. A., Delma, T. E., Amadé, B., Abdoulaye, G. M., Sawadogo, A. S., Ouédraogo, R., & Semde, R. (2024). Systematic review of chemical compounds with immunomodulatory action isolated from African medicinal plants. Molecules (Basel, Switzerland), 29(9), 2010. https://doi.org/10.3390/molecules29092010
Nunes, C. D. R., Barreto Arantes, M., Menezes de Faria Pereira, S., Leandro da Cruz, L., de Souza Passos, M., Pereira de Moraes, L., Vieira, I. J. C., & Barros de Oliveira, D. (2020). Plants as sources of anti-inflammatory agents. Molecules (Basel, Switzerland), 25(16), 3726. https://doi.org/10.3390/molecules25163726
Nwozo, O. S., Effiong, E. M., Aja, P. M., & Awuchi, C. G. (2023). Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. International Journal of Food Properties, 26(1), 359–388. https://doi.org/10.1080/10942912.2022.2157425
Oluyele, O., Oladunmoye, M. K., & Ogundare A. O. (2022). Toxicity Studies on Essential Oil from Phoenix dactylifera (L.) Seed in Wistar Rats. Biologics, 2, 69–80. https://doi.org/10.3390/biologics2010006
Oriade, T. O., Alao, O. S., & Afolayan, F. I. D. (2021). Immunostimulatory Effect of Phoenix Dactylifera Supplemented Diet on Aeromonas hydrophila Infected Clarias gariepinus. Pan African Journal of Life Sciences, 5(1). https://doi.org/10.36108/pajols/1202/50.0160
Osman, K. M., Kamal, O. E., Deif, H. N., & Ahmed, M. M. (2020). Phoenix dactylifera, mentha piperita and montanideTM ISA-201 as immunological adjuvants in a chicken model. Acta Tropica, 202(105281), 105281. https://doi.org/10.1016/j.actatropica.2019.105281
Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891. https://doi.org/10.1016/j.ejmech.2020.112891
Salmerón-Manzano, E., Garrido-Cardenas, J. A., & Manzano-Agugliaro, F. (2020). Worldwide research trends on medicinal plants. International Journal of Environmental Research and Public Health, 17(10), 3376. https://doi.org/10.3390/ijerph17103376
Sharma, S., Mishra, V., & Srivastava, N. (2020). Protective effect of Trigonella foenum-graecum and Cinnamomum zeylanicum against diabetes induced oxidative DNA damage in rats. Indian Journal of Biochemistry & Biophysics, 57, 15–26. https://doi.org/10.56042/ijbb.v57i1.31772
Sun, W., Shahrajabian, M. H., & Cheng, Q. (2021). Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Reviews in Medicinal Chemistry, 21(6), 724–730. https://doi.org/10.2174/1389557520666201127104907
Visuvanathan, T., Than, L. T. L., Stanslas, J., Chew, S. Y., & Vellasamy, S. (2022). Revisiting Trigonella foenum-graecum L.: Pharmacology and Therapeutic Potentialities. Plants, 11(11), 1450. https://doi.org/10.3390/plants11111450
Vuolo, M. M., da Silva-Maia, J. K., & Batista, Â. G. (2022). The GSH colorimetric method as measurement of antioxidant status in serum and rodent tissues. In Methods and Protocols in Food Science (pp. 187–194). New York, NY: Springer US. https://doi.org/10.1007/978-1-0716-2345-9_12
Xiong, Y., Xiao, C., Li, Z., & Yang, X. (2021). Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chemical Society Reviews, 50(10), 6013–6041. https://doi.org/10.1039/d0cs00718h
Yao, D., Zhang, B., Zhu, J., Zhang, Q., Hu, Y., Wang, S., Wang, Y., Cao, H., & Xiao, J. (2020). Advances on application of fenugreek seeds as functional foods: Pharmacology, clinical application, products, patents and market. Critical Reviews in Food Science and Nutrition, 60(14), 2342–2352. https://doi.org/10.1080/10408398.2019.1635567
Zahiruddin, S., Parveen, A., Khan, W., Ibrahim, M., Want, M. Y., Parveen, R., & Ahmad, S. (2022). Metabolomic Profiling and Immunomodulatory Activity of a Polyherbal Combination in Cyclophosphamide-Induced Immunosuppressed Mice. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.647244
Zhang, H., Xiao, F., Li, J., Han, R., Li, G., Wan, Z., Shao, S., Zhao, D., & Yan, M. (2023). Immunomodulatory activity of semen Ziziphi Spinosae protein: a potential plant protein functional food raw material. Npj Science of Food, 7(1). https://doi.org/10.1038/s41538-023-00204-3
Authors
Copyright (c) 2024 Houssem Eddine Kehili, Sakina Zerizer

This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.