Statistical optimization of microwave-assisted extraction of phytochemicals from Retama raetam (White Weeping Broom) twigs and their biological properties

Oussama Zaoui (1) , Karima Oughlissi-Dehak (2) , Mebarka Bouziane (3)
(1) Kasdi Merbah University of Ouargla, Faculty of Mathematics and Material Sciences, Department of Chemistry, Laboratory of Biogeochemistry of Desert Environments, 30000 Ouargla , Algeria
(2) M'Hamed Bougara University of Boumerdes, Faculty of Science, Department of Chemistry, Laboratory of Biogeochemistry of Desert Environments, University of Kasdi Merbah -Ouargla,30000 Ouargla , Algeria
(3) Kasdi Merbah University of Ouargla, Faculty of Mathematics and Material Sciences, Department of Chemistry, Laboratory of Biogeochemistry of Desert Environments, 30000 Ouargla , Algeria

Abstract

Background: Several phytochemicals derived from the genus Retama reported to possess diverse biological activities, including antioxidant, anti-inflammatory, and antibacterial properties.


Aims: The aim of this study was to optimize microwave-assisted extraction (MAE) of polyphenols from Retama raetam twigs using response surface methodology.


Methods: A Box-Behnken design was utilized for determining the effect of MAE factors on total polyphenol content (TPC), including ethanol concentration (50 – 70%), irradiation time (4 – 6 min), power (400 – 600 W), and solvent-to-sample ratio (15 – 25 mL/g). The optimal extract (OE) was further analyzed for total flavonoid content (TFC), total tannin content (TTC), and antioxidant activity (DPPH• scavenging and FRAP) and in vitro anti-inflammatory activity assessment of the OE was evaluated using two complementary assays (albumin denaturation and membrane stabilization).


Results: The following conditions: ethanol concentration of 64.73%, irradiation time of 5.57 min, power of 569.16 W, and solvent-to-sample ratio of 22.91 mL/g, resulted in the highest TPC (181.48 ± 1.59 mg GAE/g DR). The effectiveness and statistical validity of the derived quadratic model indicated no significant discrepancies between experimental and predicted results, demonstrating its high degree of accuracy. The obtained OE demonstrated a TFC of 31.25 ± 1.5 mg EC/g DR and a TTC of 15.17 ± 1.56 mg EC/g DR. The OE showed a significant capacity to scavenge DPPH• and an appreciable ferric-reducing power, where the IC50 and EC50 values were respectively 0.44 ± 0.08 and 0.61 ± 0.03 mg/mL. At a concentration of 1.5 mg/mL, the OE displayed moderate anti-inflammatory activity by red blood cell membrane stabilization (72.72 ± 0.73%) and reduction of heat-induced albumin denaturation (50.89 ± 0.66%).


Conclusion: The MAE of TPC from Retama raetam twigs was primarily influenced by EtOH concentration, irradiation time, and power. The OE exhibited moderate antioxidant and anti-inflammatory properties, suggesting its potential as a source of phytopharmaceuticals. 


Keywords: Retama raetam, microwave-assisted extraction, optimization, antioxidant, anti-inflammatory.

Full text article

Generated from XML file

References

Awen, B. Z. S., Unnithan, C. R., Ravi, S., Kermagy, A., Sasikumar, J. M., Khrbash, A. S., & Ekreem, W. L. (2011). Essential oils of Retama raetam from Libya: chemical composition and antimicrobial activity. Natural Product Research, 25(9), 927-933. https://doi.org/10.1080/14786419.2010.503612
[Crossref] [Google Scholar] [PubMed] [Publisher]
Belmokhtar, Z., & Harche, M. K. (2014). In vitro antioxidant activity of Retama monosperma (L.) Boiss. Natural Product Research, 28(24), 2324–2329. https://doi.org/10.1080/14786419.2014.934237
[Crossref] [Google Scholar] [PubMed] [Publisher]
Boateng, I. D. (2024). Mechanisms, capabilities, limitations, and economic stability outlook for extracting phenolics from agro-byproducts using emerging thermal extraction technologies and their combinative effects. Food and Bioprocess Technology, 17(5), 1109-1140. https://doi.org/10.1007/s11947-023-03171-5 [Crossref] [Google Scholar] [Publisher]
Brand-Williams, W., Cuvelier, M. E., Berset, C.,1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/s0023-6438(95)80008-5 [Crossref] [Google Scholar] [Publisher]
Čanadanović‐Brunet, J. M., Djilas, S. M., Ćetković, G. S., Tumbas, V. T., Mandić, A. I., & Čanadanović, V. M. (2006). Antioxidant activities of different Teucrium montanum L. Extracts. International Journal of Food Science & Technology, 41(6), 667–673. https://doi.org/10.1111/j.1365-2621.2006.01133.x [Crossref] [Google Scholar] [Publisher]
Cavalloro, V., Martino, E., Linciano, P., &Collina, S. (2021). Microwave-assisted solid extraction from natural matrices. Microwave heating - electromagnetic fields causing thermal and non-thermal effects. IntechOpen. https://doi.org/10.5772/intechopen.95440 [Crossref] [Google Scholar] [Publisher]
Chandrasekar, V., Martín-González, M.F.S., Hirst, P. and Ballard, T.S. (2015), Microwave Extraction of Apple Polyphenols. Journal of Food Process Engineering, 38: 571-582. https://doi.org/10.1111/jfpe.12187 [Crossref] [Google Scholar] [Publisher]
Chiorcea‐Paquim, A. M., Enache, T. A., De Souza Gil, E., & Oliveira‐Brett, A. M. (2020). Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1680-1726. https://doi.org/10.1111/1541-4337.12566 [Crossref] [Google Scholar] [PubMed] [Publisher]
Conforti, F., Statti, G., Tundis, R., Loizzo, M. R., Bonesi, M., Menichini, F., & Houghton, P. J. (2004). Antioxidant and cytotoxic activities of Retama raetam subsp. Gussonei. Phytotherapy Research, 18(7), 585-587. https://doi.org/10.1002/ptr.1496 [Crossref] [Google Scholar] [PubMed] [Publisher]
Dahmoune, B., Houma-Bachari, F., Chibane, M., Akrour-Aissou, C., Guégan, J.-P., Vives, T., Jéhan, P., Dahmoune, F., Mouni, L., Ferrières, V., & Hauchard, D. (2021). Microwave assisted extraction of bioactive saponins from the starfish Echinaster sepositus: Optimization by response surface methodology and comparison with ultrasound and conventional solvent extraction. Chemical Engineering and Processing - Process Intensification, 163, 108359. https://doi.org/10.1016/j.cep.2021.108359 [Crossref] [Google Scholar] [Publisher]
Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., & Madani, K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 50, 77–87. https://doi.org/10.1016/j.indcrop.2013.07.013 [Crossref] [Google Scholar] [Publisher]
Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585–595. https://doi.org/10.1016/j.foodchem.2014.06.066 [Crossref] [Google Scholar] [PubMed] [Publisher]
de Elguea-Culebras, G. O., Bravo, E. M., & Sánchez-Vioque, R. (2022). Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market – A review. Industrial Crops and Products, 175, 114261. https://doi.org/10.1016/j.indcrop.2021.114261 [Crossref] [Google Scholar] [Publisher]
Derouich, M., Bouhlali, E. D. T., Hmidani, A., Bammou, M., Bourkhis, B., Sellam, K., & Alem, C. (2020). Assessment of total polyphenols, flavonoids and anti-inflammatory potential of three Apiaceae species grown in the Southeast of Morocco. Scientifica, 9, e00507. https://doi.org/10.1016/j.sciaf.2020.e00507 [Crossref] [Google Scholar] [PubMed] [Publisher]
Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014. https://doi.org/10.1021/jf0115589 [Crossref] [Google Scholar] [PubMed] [Publisher]
Djeddi, S., Karioti, A., Yannakopoulou, E., Papadopoulos, K., Chatter, R., & Skaltsa, H. (2013). Analgesic and antioxidant activities of Algerian Retama raetam (Forssk.) Webb & Berthel extracts. Records of Natural Products, 7(3), 169. [Google Scholar] [Publisher]
Edziri, H., Mastouri, M., Chéraif, I., & Aouni, M. (2010). Chemical composition and antibacterial, antifungal and antioxidant activities of the flower oil of Retama raetam (Forssk.) Webb from Tunisia. Natural Product Research, 24(9), 789–796. https://doi.org/10.1080/14786410802529190 [Crossref] [Google Scholar] [PubMed] [Publisher]
Fdil, R., El Hamdani, N., El Kihel, A., & Sraidi, K. (2012). Distribution des alcaloïdes dans les parties aériennes de Retama monosperma (L.) Boiss. du Maroc. Annales de Toxicologie Analytique, 24(3), 139–143. https://doi.org/10.1051/ata/2012016 [Crossref] [Google Scholar] [Publisher]
Hayet, E., Maha, M., Samia, A., Mata, M., Gros, P., Raida, H., Ali, M. M., Mohamed, A. S., Gutmann, L., Mighri, Z., & Mahjoub, A. (2008). Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia. World Journal of Microbiology and Biotechnology, 24(12), 2933–2940. https://doi.org/10.1007/s11274-008-9835-y [Crossref] [Google Scholar] [Publisher]
Herrero, M. (2023). Towards green extraction of bioactive natural compounds. Analytical and Bioanalytical Chemistry, 416(9), 2039–2047. https://doi.org/10.1007/s00216-023-04969-0 [Crossref] [Google Scholar] [PubMed] [Publisher]
Kassem, M., Mosharrafa, S. A., Saleh, N. A. M., & Abdel-Wahab, S. M. (2000). Two new flavonoids from Retama raetam. Fitoterapia, 71(6), 649–654. https://doi.org/10.1016/s0367-326x(00)00224-0 [Crossref] [Google Scholar] [PubMed] [Publisher]
Khiya, Z., Oualcadi, Y., Gamar, A., Berrekhis, F., Zair, T., & Hilali, F. E. (2021). Correlation of total polyphenolic content with antioxidant activity of hydromethanolic extract and their fractions of the Salvia officinalis leaves from different regions of Morocco. Journal of Chemistry, 2021, 1–11. https://doi.org/10.1155/2021/8585313 [Crossref] [Google Scholar] [Publisher]
Loef, M., von Hegedus, J. H., Ghorasaini, M., Kroon, F. P. B., Giera, M., Ioan-Facsinay, A., Kloppenburg, M., 2020. Reproducibility of targeted lipidome analyses (Lipidyzer) in plasma and erythrocytes over a 6 – week period. Metabolites, 11(1), 26. https://doi.org/10.3390/metabo11010026 [Crossref] [Google Scholar] [PubMed] [Publisher]
Manga, E., Brostaux, Y., Ngondi, J. L., & Sindic, M. (2020). Optimisation of phenolic compounds and antioxidant activity extraction conditions of a roasted mix of Tetrapleura tetraptera (Schumach & Thonn.) and Aframomum citratum (C. Pereira) fruits using response surface methodology (RSM). Saudi Journal of Biological Sciences, 27(8), 2054–2064. https://doi.org/10.1016/j.sjbs.2020.05.003 [Crossref] [Google Scholar] [PubMed] [Publisher]
Mariem, S., Hanen, F., Inès, J., Mejdi, S., & Riadh, K. (2014). Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam. South African Journal of Botany, 94, 114–121. https://doi.org/10.1016/j.sajb.2014.06.010 [Crossref] [Google Scholar] [Publisher]
Medouni-Adrar, S., Boulekbache-Makhlouf, L., Cadot, Y., Medouni-Haroune, L., Dahmoune, F., Makhoukhe, A., & Madani, K. (2015). Optimization of the recovery of phenolic compounds from Algerian grape by-products. Industrial Crops and Products, 77, 123–132. https://doi.org/10.1016/j.indcrop.2015.08.039 [Crossref] [Google Scholar] [Publisher]
Melgar, B., Dias, M. I., Barros, L., Ferreira, I. C. F. R., Rodriguez-Lopez, A. D., & Garcia-Castello, E. M. (2019). Ultrasound and microwave assisted extraction of opuntia fruit peels biocompounds: optimization and comparison using RSM-CCD. Molecules, 24(19), 3618. https://doi.org/10.3390/molecules24193618 [Crossref] [Google Scholar] [PubMed] [Publisher]
Mizushima, Y., & Kobayashi, M. (1968). Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. Journal of Pharmacy and Pharmacology, 20(3), 169–173. https://doi.org/10.1111/j.2042-7158.1968.tb09718.x [Crossref] [Google Scholar] [PubMed] [Publisher]
Nabet, N., Gilbert-López, B., Madani, K., Herrero, M., Ibáñez, E., & Mendiola, J. A. (2019). Optimization of microwave-assisted extraction recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Industrial Crops and Products, 129, 395–404. https://doi.org/10.1016/j.indcrop.2018.12.032 [Crossref] [Google Scholar] [Publisher]
Nikolić, V. G., Troter, D. Z., Savić, I. M., Gajić, I. M. S., Zvezdanović, J. B., Konstantinović, I. B., & Konstantinović, S. S. (2023). Design and optimization of “greener” and sustainable ultrasound-assisted extraction of valuable bioactive compounds from common centaury (Centaurium erythraea Rafn) aerial parts: A comparative study using aqueous propylene glycol and ethanol. Industrial Crops and Products, 192, 116070. https://doi.org/10.1016/j.indcrop.2022.116070 [Crossref] [Google Scholar] [Publisher]
Niroula, A., Amgain, N., KC, R., Adhikari, S., & Acharya, J. (2021). Pigments, ascorbic acid, total polyphenols and antioxidant capacities in deetiolated barley (Hordeum vulgare) and wheat (Triticum aestivum) microgreens. Food Chemistry, 354, 129491. https://doi.org/10.1016/j.foodchem.2021.129491 [Crossref] [Google Scholar] [PubMed] [Publisher]
Olalere O.A and Gan C-Y (2021) Microwave-assisted extraction of phenolic compounds from Euphorbia hirta leaf and characterization of its morphology and thermal stability. Separation Science and Technology, 56:11, 1853-1865. https://doi.org/10.1080/01496395.2020.1795678 [Crossref] [Google Scholar] [Publisher]
Paz, J. E., Muñiz Márquez, D. B., Martínez Ávila, G. C. G., Belmares Cerda, R. E., & Aguilar, C. N. (2015). Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrasonics Sonochemistry, 22, 474–481. https://doi.org/10.1016/j.ultsonch.2014.06.001 [Crossref] [Google Scholar] [PubMed] [Publisher]
Pliszka, B. (2020). Content and correlation of polyphenolic compounds, bioelements and antiradical activity in black elder berries (Sambucus nigra L.). Journal of Elementology, 25(2): 595-605. https://doi.org/10.5601/jelem.2019.24.1.1829 [Crossref] [Google Scholar] [Publisher]
Saada, M., Falleh, H., Catarino, M., Cardoso, S., & Ksouri, R. (2018). Plant Growth Modulates Metabolites and Biological Activities in Retama raetam (Forssk.) Webb. Molecules, 23(9), 2177. https://doi.org/10.3390/molecules23092177 [Crossref] [Google Scholar] [PubMed] [Publisher]
Saada, M., Oueslati, M., Msaada, K., Snoussi, M., Hamami, M., & Ksouri, R. (2018). Changeability in Retama raetam essential oils chemical composition, antioxidant and antimicrobial properties as affected by the physiological stage. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 152(6), 1248–1255. https://doi.org/10.1080/11263504.2018.1435579 [Crossref] [Google Scholar] [Publisher]
Saada, M., Wasli, H., Jallali, I., Kboubi, R., Girard-Lalancette, K., Mshvildadze, V., Ksouri, R., Legault, J., & Cardoso, S. M. (2021). Bio-guided fractionation of Retama raetam (Forssk.) Webb & Berthel polar extracts. Molecules, 26(19), 5800. https://doi.org/10.3390/molecules26195800 [Crossref] [Google Scholar] [PubMed] [Publisher]
Sai-Ut, S., Kingwascharapong, P., Mazumder, M. A. R., & Rawdkuen, S. (2023). Optimization of polyphenolic compounds from Gossampinus malabarica flowers by microwave-assisted extraction technology. Future Foods, 8, 100271. https://doi.org/10.1016/j.fufo.2023.100271 [Crossref] [Google Scholar] [Publisher]
Serairi-Beji, R., Aidi Wannes, W., Hamdi, A., Tej, R., Ksouri, R., Saidani-Tounsi, M., Lachaal, M., & Karray-Bouraoui, N. (2017). Antioxidant and hepatoprotective effects of Asparagus albus leaves in carbon tetrachloride-induced liver injury rats. Journal of Food Biochemistry, 42(1), e12433. https://doi.org/10.1111/jfbc.12433 [Crossref] [Google Scholar] [Publisher]
Shinde, U. A., Phadke, A. S., Nair, A. M., Mungantiwar, A. A., Dikshit, V. J., & Saraf, M. N. (1999). Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.) Loud. wood oil. Journal of Ethnopharmacology, 65(1), 21–27. https://doi.org/10.1016/s0378-8741(98)00150-0 [Crossref] [Google Scholar] [Publisher]
Truong, D.-H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., & Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-Inflammatory activities of Severinia buxifolia. Journal of Food Quality, 2019, 1–9. https://doi.org/10.1155/2019/8178294 [Crossref] [Google Scholar] [Publisher]
Wong, S., Leong, L., & Williamkoh, J. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99(4), 775–783. https://doi.org/10.1016/j.foodchem.2005.07.058 [Crossref] [Google Scholar] [Publisher]
Wu, D., Sun, M. Z., Zhang, C., & Xin, Y. (2014). Antioxidant properties of Lactobacillus and its protecting effects to oxidative stress Caco-2 cells. Journal of Animal and Plant Sciences, 24(6), 1766-1771. [Google Scholar] [Publisher]
Wu, J., Yu, D., Sun, H., Zhang, Y., Zhang, W., Meng, F., & Du, X. (2015). Optimizing the extraction of anti-tumor alkaloids from the stem of Berberis amurensis by response surface methodology. Industrial Crops and Products, 69, 68–75. https://doi.org/10.1016/j.indcrop.2015.01.053 [Crossref] [Google Scholar] [Publisher]
Yang, L., Cao, Y., Jiang, J., Lin, Q., Chen, J., & Zhu, L. (2010). Response surface optimization of ultrasound‐assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl. Journal of Separation Science, 33(9), 1349–1355. https://doi.org/10.1002/jssc.200900776 [Crossref] [Google Scholar] [PubMed] [Publisher]
Zaoui, O., Oughlissi-Dehak, karima, Bouziane, M., Boudou, F, Zaoui, F, Benras, A., Hadj-Mahammed, M., & Sehmi, A. (2023). Evaluation of eco-extraction methods of antioxidants and their activities from Retama raetam twigs. Polish Journal of Natural Sciences, 38(4). [Google Scholar] [Publisher]

Authors

Oussama Zaoui
zaouioussama@outlook.fr (Primary Contact)
Karima Oughlissi-Dehak
Mebarka Bouziane
Zaoui, O., Oughlissi-Dehak, K., & Bouziane, M. (2024). Statistical optimization of microwave-assisted extraction of phytochemicals from Retama raetam (White Weeping Broom) twigs and their biological properties. The North African Journal of Food and Nutrition Research, 8(18), 118–129. https://doi.org/10.51745/najfnr.8.18.118-129

Article Details

Received 2024-06-06
Accepted 2024-09-29
Published 2024-10-18