Statistical optimization of microwave-assisted extraction of phytochemicals from Retama raetam (White Weeping Broom) twigs and their biological properties
Abstract
Background: Several phytochemicals derived from the genus Retama reported to possess diverse biological activities, including antioxidant, anti-inflammatory, and antibacterial properties.
Aims: The aim of this study was to optimize microwave-assisted extraction (MAE) of polyphenols from Retama raetam twigs using response surface methodology.
Methods: A Box-Behnken design was utilized for determining the effect of MAE factors on total polyphenol content (TPC), including ethanol concentration (50 – 70%), irradiation time (4 – 6 min), power (400 – 600 W), and solvent-to-sample ratio (15 – 25 mL/g). The optimal extract (OE) was further analyzed for total flavonoid content (TFC), total tannin content (TTC), and antioxidant activity (DPPH• scavenging and FRAP) and in vitro anti-inflammatory activity assessment of the OE was evaluated using two complementary assays (albumin denaturation and membrane stabilization).
Results: The following conditions: ethanol concentration of 64.73%, irradiation time of 5.57 min, power of 569.16 W, and solvent-to-sample ratio of 22.91 mL/g, resulted in the highest TPC (181.48 ± 1.59 mg GAE/g DR). The effectiveness and statistical validity of the derived quadratic model indicated no significant discrepancies between experimental and predicted results, demonstrating its high degree of accuracy. The obtained OE demonstrated a TFC of 31.25 ± 1.5 mg EC/g DR and a TTC of 15.17 ± 1.56 mg EC/g DR. The OE showed a significant capacity to scavenge DPPH• and an appreciable ferric-reducing power, where the IC50 and EC50 values were respectively 0.44 ± 0.08 and 0.61 ± 0.03 mg/mL. At a concentration of 1.5 mg/mL, the OE displayed moderate anti-inflammatory activity by red blood cell membrane stabilization (72.72 ± 0.73%) and reduction of heat-induced albumin denaturation (50.89 ± 0.66%).
Conclusion: The MAE of TPC from Retama raetam twigs was primarily influenced by EtOH concentration, irradiation time, and power. The OE exhibited moderate antioxidant and anti-inflammatory properties, suggesting its potential as a source of phytopharmaceuticals.
Keywords: Retama raetam, microwave-assisted extraction, optimization, antioxidant, anti-inflammatory.
Full text article
References
[Crossref] [Google Scholar] [PubMed] [Publisher]
Belmokhtar, Z., & Harche, M. K. (2014). In vitro antioxidant activity of Retama monosperma (L.) Boiss. Natural Product Research, 28(24), 2324–2329. https://doi.org/10.1080/14786419.2014.934237
[Crossref] [Google Scholar] [PubMed] [Publisher]
Boateng, I. D. (2024). Mechanisms, capabilities, limitations, and economic stability outlook for extracting phenolics from agro-byproducts using emerging thermal extraction technologies and their combinative effects. Food and Bioprocess Technology, 17(5), 1109-1140. https://doi.org/10.1007/s11947-023-03171-5 [Crossref] [Google Scholar] [Publisher]
Brand-Williams, W., Cuvelier, M. E., Berset, C.,1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/s0023-6438(95)80008-5 [Crossref] [Google Scholar] [Publisher]
Čanadanović‐Brunet, J. M., Djilas, S. M., Ćetković, G. S., Tumbas, V. T., Mandić, A. I., & Čanadanović, V. M. (2006). Antioxidant activities of different Teucrium montanum L. Extracts. International Journal of Food Science & Technology, 41(6), 667–673. https://doi.org/10.1111/j.1365-2621.2006.01133.x [Crossref] [Google Scholar] [Publisher]
Cavalloro, V., Martino, E., Linciano, P., &Collina, S. (2021). Microwave-assisted solid extraction from natural matrices. Microwave heating - electromagnetic fields causing thermal and non-thermal effects. IntechOpen. https://doi.org/10.5772/intechopen.95440 [Crossref] [Google Scholar] [Publisher]
Chandrasekar, V., Martín-González, M.F.S., Hirst, P. and Ballard, T.S. (2015), Microwave Extraction of Apple Polyphenols. Journal of Food Process Engineering, 38: 571-582. https://doi.org/10.1111/jfpe.12187 [Crossref] [Google Scholar] [Publisher]
Chiorcea‐Paquim, A. M., Enache, T. A., De Souza Gil, E., & Oliveira‐Brett, A. M. (2020). Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1680-1726. https://doi.org/10.1111/1541-4337.12566 [Crossref] [Google Scholar] [PubMed] [Publisher]
Conforti, F., Statti, G., Tundis, R., Loizzo, M. R., Bonesi, M., Menichini, F., & Houghton, P. J. (2004). Antioxidant and cytotoxic activities of Retama raetam subsp. Gussonei. Phytotherapy Research, 18(7), 585-587. https://doi.org/10.1002/ptr.1496 [Crossref] [Google Scholar] [PubMed] [Publisher]
Dahmoune, B., Houma-Bachari, F., Chibane, M., Akrour-Aissou, C., Guégan, J.-P., Vives, T., Jéhan, P., Dahmoune, F., Mouni, L., Ferrières, V., & Hauchard, D. (2021). Microwave assisted extraction of bioactive saponins from the starfish Echinaster sepositus: Optimization by response surface methodology and comparison with ultrasound and conventional solvent extraction. Chemical Engineering and Processing - Process Intensification, 163, 108359. https://doi.org/10.1016/j.cep.2021.108359 [Crossref] [Google Scholar] [Publisher]
Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., & Madani, K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 50, 77–87. https://doi.org/10.1016/j.indcrop.2013.07.013 [Crossref] [Google Scholar] [Publisher]
Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585–595. https://doi.org/10.1016/j.foodchem.2014.06.066 [Crossref] [Google Scholar] [PubMed] [Publisher]
de Elguea-Culebras, G. O., Bravo, E. M., & Sánchez-Vioque, R. (2022). Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market – A review. Industrial Crops and Products, 175, 114261. https://doi.org/10.1016/j.indcrop.2021.114261 [Crossref] [Google Scholar] [Publisher]
Derouich, M., Bouhlali, E. D. T., Hmidani, A., Bammou, M., Bourkhis, B., Sellam, K., & Alem, C. (2020). Assessment of total polyphenols, flavonoids and anti-inflammatory potential of three Apiaceae species grown in the Southeast of Morocco. Scientifica, 9, e00507. https://doi.org/10.1016/j.sciaf.2020.e00507 [Crossref] [Google Scholar] [PubMed] [Publisher]
Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014. https://doi.org/10.1021/jf0115589 [Crossref] [Google Scholar] [PubMed] [Publisher]
Djeddi, S., Karioti, A., Yannakopoulou, E., Papadopoulos, K., Chatter, R., & Skaltsa, H. (2013). Analgesic and antioxidant activities of Algerian Retama raetam (Forssk.) Webb & Berthel extracts. Records of Natural Products, 7(3), 169. [Google Scholar] [Publisher]
Edziri, H., Mastouri, M., Chéraif, I., & Aouni, M. (2010). Chemical composition and antibacterial, antifungal and antioxidant activities of the flower oil of Retama raetam (Forssk.) Webb from Tunisia. Natural Product Research, 24(9), 789–796. https://doi.org/10.1080/14786410802529190 [Crossref] [Google Scholar] [PubMed] [Publisher]
Fdil, R., El Hamdani, N., El Kihel, A., & Sraidi, K. (2012). Distribution des alcaloïdes dans les parties aériennes de Retama monosperma (L.) Boiss. du Maroc. Annales de Toxicologie Analytique, 24(3), 139–143. https://doi.org/10.1051/ata/2012016 [Crossref] [Google Scholar] [Publisher]
Hayet, E., Maha, M., Samia, A., Mata, M., Gros, P., Raida, H., Ali, M. M., Mohamed, A. S., Gutmann, L., Mighri, Z., & Mahjoub, A. (2008). Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia. World Journal of Microbiology and Biotechnology, 24(12), 2933–2940. https://doi.org/10.1007/s11274-008-9835-y [Crossref] [Google Scholar] [Publisher]
Herrero, M. (2023). Towards green extraction of bioactive natural compounds. Analytical and Bioanalytical Chemistry, 416(9), 2039–2047. https://doi.org/10.1007/s00216-023-04969-0 [Crossref] [Google Scholar] [PubMed] [Publisher]
Kassem, M., Mosharrafa, S. A., Saleh, N. A. M., & Abdel-Wahab, S. M. (2000). Two new flavonoids from Retama raetam. Fitoterapia, 71(6), 649–654. https://doi.org/10.1016/s0367-326x(00)00224-0 [Crossref] [Google Scholar] [PubMed] [Publisher]
Khiya, Z., Oualcadi, Y., Gamar, A., Berrekhis, F., Zair, T., & Hilali, F. E. (2021). Correlation of total polyphenolic content with antioxidant activity of hydromethanolic extract and their fractions of the Salvia officinalis leaves from different regions of Morocco. Journal of Chemistry, 2021, 1–11. https://doi.org/10.1155/2021/8585313 [Crossref] [Google Scholar] [Publisher]
Loef, M., von Hegedus, J. H., Ghorasaini, M., Kroon, F. P. B., Giera, M., Ioan-Facsinay, A., Kloppenburg, M., 2020. Reproducibility of targeted lipidome analyses (Lipidyzer) in plasma and erythrocytes over a 6 – week period. Metabolites, 11(1), 26. https://doi.org/10.3390/metabo11010026 [Crossref] [Google Scholar] [PubMed] [Publisher]
Manga, E., Brostaux, Y., Ngondi, J. L., & Sindic, M. (2020). Optimisation of phenolic compounds and antioxidant activity extraction conditions of a roasted mix of Tetrapleura tetraptera (Schumach & Thonn.) and Aframomum citratum (C. Pereira) fruits using response surface methodology (RSM). Saudi Journal of Biological Sciences, 27(8), 2054–2064. https://doi.org/10.1016/j.sjbs.2020.05.003 [Crossref] [Google Scholar] [PubMed] [Publisher]
Mariem, S., Hanen, F., Inès, J., Mejdi, S., & Riadh, K. (2014). Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam. South African Journal of Botany, 94, 114–121. https://doi.org/10.1016/j.sajb.2014.06.010 [Crossref] [Google Scholar] [Publisher]
Medouni-Adrar, S., Boulekbache-Makhlouf, L., Cadot, Y., Medouni-Haroune, L., Dahmoune, F., Makhoukhe, A., & Madani, K. (2015). Optimization of the recovery of phenolic compounds from Algerian grape by-products. Industrial Crops and Products, 77, 123–132. https://doi.org/10.1016/j.indcrop.2015.08.039 [Crossref] [Google Scholar] [Publisher]
Melgar, B., Dias, M. I., Barros, L., Ferreira, I. C. F. R., Rodriguez-Lopez, A. D., & Garcia-Castello, E. M. (2019). Ultrasound and microwave assisted extraction of opuntia fruit peels biocompounds: optimization and comparison using RSM-CCD. Molecules, 24(19), 3618. https://doi.org/10.3390/molecules24193618 [Crossref] [Google Scholar] [PubMed] [Publisher]
Mizushima, Y., & Kobayashi, M. (1968). Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. Journal of Pharmacy and Pharmacology, 20(3), 169–173. https://doi.org/10.1111/j.2042-7158.1968.tb09718.x [Crossref] [Google Scholar] [PubMed] [Publisher]
Nabet, N., Gilbert-López, B., Madani, K., Herrero, M., Ibáñez, E., & Mendiola, J. A. (2019). Optimization of microwave-assisted extraction recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Industrial Crops and Products, 129, 395–404. https://doi.org/10.1016/j.indcrop.2018.12.032 [Crossref] [Google Scholar] [Publisher]
Nikolić, V. G., Troter, D. Z., Savić, I. M., Gajić, I. M. S., Zvezdanović, J. B., Konstantinović, I. B., & Konstantinović, S. S. (2023). Design and optimization of “greener” and sustainable ultrasound-assisted extraction of valuable bioactive compounds from common centaury (Centaurium erythraea Rafn) aerial parts: A comparative study using aqueous propylene glycol and ethanol. Industrial Crops and Products, 192, 116070. https://doi.org/10.1016/j.indcrop.2022.116070 [Crossref] [Google Scholar] [Publisher]
Niroula, A., Amgain, N., KC, R., Adhikari, S., & Acharya, J. (2021). Pigments, ascorbic acid, total polyphenols and antioxidant capacities in deetiolated barley (Hordeum vulgare) and wheat (Triticum aestivum) microgreens. Food Chemistry, 354, 129491. https://doi.org/10.1016/j.foodchem.2021.129491 [Crossref] [Google Scholar] [PubMed] [Publisher]
Olalere O.A and Gan C-Y (2021) Microwave-assisted extraction of phenolic compounds from Euphorbia hirta leaf and characterization of its morphology and thermal stability. Separation Science and Technology, 56:11, 1853-1865. https://doi.org/10.1080/01496395.2020.1795678 [Crossref] [Google Scholar] [Publisher]
Paz, J. E., Muñiz Márquez, D. B., Martínez Ávila, G. C. G., Belmares Cerda, R. E., & Aguilar, C. N. (2015). Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrasonics Sonochemistry, 22, 474–481. https://doi.org/10.1016/j.ultsonch.2014.06.001 [Crossref] [Google Scholar] [PubMed] [Publisher]
Pliszka, B. (2020). Content and correlation of polyphenolic compounds, bioelements and antiradical activity in black elder berries (Sambucus nigra L.). Journal of Elementology, 25(2): 595-605. https://doi.org/10.5601/jelem.2019.24.1.1829 [Crossref] [Google Scholar] [Publisher]
Saada, M., Falleh, H., Catarino, M., Cardoso, S., & Ksouri, R. (2018). Plant Growth Modulates Metabolites and Biological Activities in Retama raetam (Forssk.) Webb. Molecules, 23(9), 2177. https://doi.org/10.3390/molecules23092177 [Crossref] [Google Scholar] [PubMed] [Publisher]
Saada, M., Oueslati, M., Msaada, K., Snoussi, M., Hamami, M., & Ksouri, R. (2018). Changeability in Retama raetam essential oils chemical composition, antioxidant and antimicrobial properties as affected by the physiological stage. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 152(6), 1248–1255. https://doi.org/10.1080/11263504.2018.1435579 [Crossref] [Google Scholar] [Publisher]
Saada, M., Wasli, H., Jallali, I., Kboubi, R., Girard-Lalancette, K., Mshvildadze, V., Ksouri, R., Legault, J., & Cardoso, S. M. (2021). Bio-guided fractionation of Retama raetam (Forssk.) Webb & Berthel polar extracts. Molecules, 26(19), 5800. https://doi.org/10.3390/molecules26195800 [Crossref] [Google Scholar] [PubMed] [Publisher]
Sai-Ut, S., Kingwascharapong, P., Mazumder, M. A. R., & Rawdkuen, S. (2023). Optimization of polyphenolic compounds from Gossampinus malabarica flowers by microwave-assisted extraction technology. Future Foods, 8, 100271. https://doi.org/10.1016/j.fufo.2023.100271 [Crossref] [Google Scholar] [Publisher]
Serairi-Beji, R., Aidi Wannes, W., Hamdi, A., Tej, R., Ksouri, R., Saidani-Tounsi, M., Lachaal, M., & Karray-Bouraoui, N. (2017). Antioxidant and hepatoprotective effects of Asparagus albus leaves in carbon tetrachloride-induced liver injury rats. Journal of Food Biochemistry, 42(1), e12433. https://doi.org/10.1111/jfbc.12433 [Crossref] [Google Scholar] [Publisher]
Shinde, U. A., Phadke, A. S., Nair, A. M., Mungantiwar, A. A., Dikshit, V. J., & Saraf, M. N. (1999). Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.) Loud. wood oil. Journal of Ethnopharmacology, 65(1), 21–27. https://doi.org/10.1016/s0378-8741(98)00150-0 [Crossref] [Google Scholar] [Publisher]
Truong, D.-H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., & Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-Inflammatory activities of Severinia buxifolia. Journal of Food Quality, 2019, 1–9. https://doi.org/10.1155/2019/8178294 [Crossref] [Google Scholar] [Publisher]
Wong, S., Leong, L., & Williamkoh, J. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99(4), 775–783. https://doi.org/10.1016/j.foodchem.2005.07.058 [Crossref] [Google Scholar] [Publisher]
Wu, D., Sun, M. Z., Zhang, C., & Xin, Y. (2014). Antioxidant properties of Lactobacillus and its protecting effects to oxidative stress Caco-2 cells. Journal of Animal and Plant Sciences, 24(6), 1766-1771. [Google Scholar] [Publisher]
Wu, J., Yu, D., Sun, H., Zhang, Y., Zhang, W., Meng, F., & Du, X. (2015). Optimizing the extraction of anti-tumor alkaloids from the stem of Berberis amurensis by response surface methodology. Industrial Crops and Products, 69, 68–75. https://doi.org/10.1016/j.indcrop.2015.01.053 [Crossref] [Google Scholar] [Publisher]
Yang, L., Cao, Y., Jiang, J., Lin, Q., Chen, J., & Zhu, L. (2010). Response surface optimization of ultrasound‐assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl. Journal of Separation Science, 33(9), 1349–1355. https://doi.org/10.1002/jssc.200900776 [Crossref] [Google Scholar] [PubMed] [Publisher]
Zaoui, O., Oughlissi-Dehak, karima, Bouziane, M., Boudou, F, Zaoui, F, Benras, A., Hadj-Mahammed, M., & Sehmi, A. (2023). Evaluation of eco-extraction methods of antioxidants and their activities from Retama raetam twigs. Polish Journal of Natural Sciences, 38(4). [Google Scholar] [Publisher]
Authors
Copyright (c) 2024 Oussama Zaoui, Karima Oughlissi-Dehak, Mebarka Bouziane
This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.