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ABSTRACT ARTICLE INFORMATION 

Background: Thiacloprid, a neonicotinoid insecticide, is known to accumulate in various fruits and vegetables, 
including fresh tomatoes. There is escalating concern about the potential health risks associated with its exposure, 
particularly during vulnerable periods such as gestation and lactation. While previous studies have indicated 
adverse effects of neonicotinoids on diverse physiological systems, information on their impact on the 
hematopoietic and immune systems at low doses remains limited. 
Aims: The aim of this study was to evaluate the toxicity of thiacloprid at a microdose of 0.02 mg/kg and to assess 
the preventive effects of the hydroalcoholic extract derived from bitter almond apricot kernels (at a dose of 
50 mg/kg) on the hematopoietic and immune systems during gestation (approximately 19 to 21 days) and 
lactation (approximately 3 to 4 weeks) in male and female Generation 1 (G1) rats. 
Methods: The investigation employed several methodological approaches to examine the effects of thiacloprid 
and the putative protective potential of the extract. Hematological and immunological parameters were evaluated 
using automated systems and specialized kits. Rats were systematically allocated into distinct experimental groups, 
including those exposed to thiacloprid and those concurrently treated with the apricot kernel extract, to observe 
the impacts on blood and immune parameters. Furthermore, histological analyses of the thymic tissue were 
performed to assess structural alterations induced by thiacloprid exposure and to ascertain the potential protective 
effects of the extract.  
Results: The results revealed a significant reduction in erythrocyte count, hematocrit, hemoglobin (HGB), and 
fibrinogen concentrations in rats exposed to thiacloprid. Conversely, a significant increase was observed in total 
white blood cell count, lymphocyte count, platelet count, mean corpuscular volume (MCV), reticulocyte levels, 
prothrombin time (PT), and activated partial thromboplastin time (aPTT). However, treatment with the apricot 
kernel extract led to notable amelioration of these perturbed parameters across the treated groups, indicative of a 
protective effect. Histological examination of thymic tissue from thiacloprid-exposed rats demonstrated severe 
histopathological damage, characterized by profound destruction of the thymic parenchyma, multifocal necrotic 
lesions, and the presence of numerous apoptotic bodies. In contrast, the thymic architecture remained intact in 
the extract-treated groups, with no significant histological abnormalities, thereby further corroborating the 
protective potential of the apricot kernel extract. 
Conclusions: Exposure to thiacloprid, even at a microdose, can induce discernible toxicity within the 
hematopoietic and immune systems during critical development stages. Nevertheless, the hydroalcoholic extract 
of bitter almond from apricot kernels appears to safeguard the cellular integrity of blood and its parameters against 
the toxic effects of this insecticide, likely attributable to its beneficial phytochemical constituents.  
Keywords: Thiacloprid toxicity; Bitter apricot kernel extract; Hematopoietic and Immune systems; Gestation and 
Lactation; Thymus histology. 
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1 INTRODUCTION 
Neonicotinoids represent an emerging class of insecticides 

developed as an alternative to organophosphate and 
carbamate compounds, recognized for their established 
toxicity. This family of insecticides is extensively employed in 
agriculture for pest control due to its broad spectrum of action 
(Schaafsma et al., 2015). Their mode of action involves 
binding to nicotinic acetylcholine receptors (nAChRs), 
leading to hyperexcitation, abnormal paralysis, and ultimately 
the demise of target organisms (Chen et al., 2014). This class 

comprises seven chemical variants; imidacloprid, 
thiamethoxam, clothianidin, thiacloprid, acetamiprid, 
dinotefuran, and nitonpyrem (Pang et al., 2020). Among 
these, Thiacloprid (THI) is predominantly utilized in Algeria. 
As a chloroprynydilic neonicotinoid, THI shares the common 
mechanism of blocking acetylcholine receptors (Galdikova et 
al., 2019) and was registered in 2000 under the trade name 
Calypso® 480SC (480 g.L-1) (Schwarzbacherová et al., 2019).  

Recent research indicates that THI exhibits toxicity in 
mammals, both acutely and chronically across a range of 
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dosages. Its adverse effects manifest as neurotoxicity (EFSA, 
2019), hepatotoxicity and nephrotoxicity (Vivek & Jain, 
2020), and endocrine disruptions (Sekeroglu et al., 2014). 
Furthermore, this insecticide exerts deleterious effects on 
hematological parameters. Recent studies have demonstrated 
that thiacloprid exposure can lead to decreased red blood 
cells, white blood cells, hematocrit, hemoglobin, mean 
corpuscular volume, and platelet count, concurrently 
increasing the osmotic fragility of erythrocytes in equine and 
bovine blood samples (Arrigo et al., 2023). It has also been 
associated with genotoxic and cytotoxic effects on bovine 
whole blood cells, inducing DNA damage, chromosomal 
aberrations, sister chromatid exchanges, and micronucleus 
formation (Galdíková et al.; 2015; Galdíková et al., 2022). 
Additionally, THI interacts with calf thymus DNA, altering 
its structure and stability through direct binding (Verebová et 
al., 2019).  

Within the toxicopathological context, several medicinal 
plants are recognized for their cytoprotective properties, 
thereby possessing the potential to prevent or ameliorate 
various pathological aspects induced by insecticides and other 
environmental pollutants. These plants are conventionally 
employed in traditional medicine as whole plants or in the 
form of extracts. Bitter apricot kernels (Prunus armeniaca L.) 
are known to possess several traditional medicinal properties, 
including those related to pulmonary health, digestive 
regulation, and trauma management (Al-Juhaimi et al., 
2021). These kernels are notably rich in monounsaturated 
fatty acids, vitamin E, carotenoids and amygdalin, rendering 
them a valuable source of bioactive compounds (Al-Juhaimi 
et al., 2018). Moreover, bitter apricot kernels extract has 
demonstrated neuroprotective potential against thiacloprid-
induced toxicity, by restoring mitochondrial redox 
homeostasis, preventing cognitive impairment, and 
mitigating brain tissue damage (Djellal et al., 2022).  

Building on these preliminary findings that highlight the 
potential involvement of thiacloprid and bitter apricot kernels 
in mammalian health, the present study aimed to contribute 
to the assessment of thiacloprid's toxic effects particularly on 
the hematopoietic and immune systems, in rats exposed 
during the gestational and lactational windows. 
Concurrently, this search seeks to valuate the cytoprotective 
effect of the hydroalcoholic extract derived from bitter 
almonds of the apricot kernels against these documented 
toxicities.  

2 MATERIAL AND METHODS  

2.1 Harvesting, Drying of Plant Material 
and Extraction 

The study utilized bitter almonds obtained from apricot 
(Prunus armeniaca L.) harvested in Ain-Elkhadra, M'sila, 

Algeria, between May and July 2022. Upon collection, the 
kernels were meticulously extracted, subsequently crushed, 
dried, and then ground into a fine powder. The extraction 
process was conducted in accordance with the method 
described by Minaiyan et al. (2014), which involved a 72-
hour maceration period in aqueous ethanol. Following 
maceration, the mixture was filtered, and the filtrate was 
subjected to drying at 40°C to obtain the dry hydroalcoholic 
extract. The resulting residue was stored at 4°C for 
subsequent use. 

2.2 Animal Husbandry 
Wistar albino rats were procured from the Pasteur 

Institute in Algiers. Upon arrival, the animals underwent a 
two-week acclimatization period. Throughout the study, rats 
were maintained under standard laboratory conditions, with 
ad libitum access to food and water. Environmental controls 
included a controlled ambient temperature of 22±2∘C, a 
relative humidity of 50±10%, and a 12-hour light/dark 
cycle.  

2.3 Chemical Agent, Extract Dose, and 
Animal Treatment Protocol 

The study employed thiacloprid, a commercial-grade 
pesticide, for the experimental treatment of rats. The selected 
dose of THI was 0.020 mg/kg/day, determined based on its 
documented presence in biological matrices such as fresh 
tomatoes (Omirou et al., 2009). This environmental 
concentration was converted to a daily dose for rats using a 
conversion factor of 0.05 (EFSA, 2011). A hydroalcoholic 
extract of bitter apricot kernels, at a dose of 50 mg/kg/day, 
was administered as a putative preventive treatment against 
thiacloprid toxicity (Kovacova et al., 2020).  

Following the 15-day acclimatization period, nulliparous 
female Wistar rats were mated with males (two females per 
male, overnight). The following morning, vaginal smears 
were microscopically examined to confirm evidence of 
gestation. This day was designated as gestational day 0. 
Pregnant rats were randomly assigned to one of four 
experimental groups:  

 Control (CON) Group: Received distilled water orally 
throughout the gestation and lactation periods. 

 Thiacloprid (THI) Group: Received 0.020 mg/kg/day 
of THI orally throughout the gestation and lactation 
periods. 

 Extract (EXT) Group: Received 50 mg/kg/day of the 
hydroalcoholic extract of bitter apricot kernels orally 
throughout the gestation and lactation periods. 

 Thiacloprid + Extract (THI+EXT) Group: Received 
concurrent oral administrations of 0.020 mg/kg/day of 
THI and 50 mg/kg/day of the hydroalcoholic extract 
throughout the gestation and lactation periods. 
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2.4 Evaluation of First-Generation (G1) 
Offspring 

The study focused on evaluating the hematotoxicity of 
thiacloprid (THI) and the preventive effect of bitter almond 
extract from apricot kernels in first-generation (G1) adult 
male and female rats. At the conclusion of the experimental 
period, the G1 rats were sacrificed, and blood samples were 
collected for biochemical and hematological analyses. These 
analyses included a complete blood count (CBC), 
preparation and examination of blood smear, determination 
of reticulocyte count, measurement of prothrombin time 
(PT), activated partial thromboplastin time (aPPT), and 
fibrinogen levels. Additionally, histological examination of 
thymic tissue was performed to assess structural 
integrity.  All specified parameters were evaluated using 
SPINREACT spectrophotometric reagent kits and 
automated analytical equipment. The experimental protocols 
adhered strictly to ethical guidelines and received approval 
from the committee of the ‘’Algerian Association of Sciences 
in Animal Experimentation’’ under law No.88-08/1988, 
related to veterinary medical activities and animal health 
protection (N° JORA:004/1988). 

Complete Blood Count (CBC) 

The Complete Blood Count (CBC) was performed to 
ascertain the quantitative and qualitative composition of 
blood cellular components. Blood samples from G1 rats were 
collected into hematocrit capillaries and EDTA-
anticoagulated tubes. To ensure accuracy, cytological and 
platelet count analyses were conducted within two hours of 
blood collection. Specialized automated devices were utilized 
to enumerate various blood cell types based on their specific 
characteristics (Diakite et al., 2017). 

Blood Smear Examination 

The blood smear examination involved microscopic 
visualization of blood cellular elements (Cloutier et al., 
2014). A small blood sample obtained from orbital sinus of 
each rat was transferred to an EDTA-anticoagulated tube. A 
single drop of whole blood was then placed on a microscope 
slide, uniformly spread via capillary action, and air-dried. 
The prepared smear was then stained with May-Grünwald 
Giemsa (MGG) stain and examined under a light 
microscope (Piaton et al., 2015). Interpretation takes into 
account cell size, shape, appearance, hemoglobin content, 
and white blood cell types and percentages (Ghosh et al., 
2016). 

Reticulocyte Count 

Reticulocytes represent immature erythrocytes released 
into the bloodstream from the bone marrow following 
erythropoiesis (Cowgill et al., 2003). The reticulocyte 

identification is based on the presence of residual ribosomal 
RNA, which appears as bright blue filaments and 
granulations upon supravital staining. For analysis, whole 
blood was mixed with a specific reticulocyte dye, allowed to 
stand for 15 minutes, and then used to prepare a blood 
smear. The reticulocyte count was performed by 
enumerating reticulocytes among 500 red blood cells, as 
described by Bellier & Cordonnier (2010).  

Prothrombin Time (PT) 

Prothrombin time (PT) is a crucial essay employed to 
measure the extrinsic pathway of blood coagulation and 
identify deficiencies in extrinsic coagulation factors (Hafian 
et al., 2003). This assay measures the time required for clot 
formation after the addition of thromboplastin—a tissue 
extract rich in tissue factor, phospholipids, and calcium—to 
platelet-poor plasma. Coagulation is initiated by the 
activation of Factor VII by tissue factor. The results of the 
Quick time were expressed in seconds relative to a control 
(Ref. 1709222. SPINREACT, 2015). 

International Normalized Ratio (INR)  

The International Normalized Ratio (INR) serves as a 
standardized measure for PT results, particularly relevant for 
comparative purposes across different laboratories. The INR 
was calculated as the ratio between the prothrombin time of 
the treated rat and that of the control group, utilizing the 
following formula by Laoudy et al. (2016):  

INR =  �Patient PT
Control PT

� ISI  

 

Kaolin Partial Thromboplastin Time (KPTT) 

The Kaolin Partial Thromboplastin Time (KPTT) 
measures the clotting time of recalcified platelet-poor plasma 
in the presence of phospholipids (cephalin) and an activator, 
kaolin (Ignjatovic, 2013). This assay is employed to assess 
the integrity of intrinsic pathway of plasma coagulation and 
its results are expressed in seconds (Crighton, 2013). 

Fibrinogen Measurement 

Fibrinogen, a pivotal protein present in blood plasma 
and synthesized by the liver, is determined by the thrombin 
clotting time, which is inversely proportional to the 
concentration of fibrinogen within the plasma sample (Stang 
& Mitchell, 2013). 

2.5 Histological study  

Histological processing of thymic tissue involved a 
sequence of standard laboratory procedures: fixation, 
dehydration, clarification, paraffin baths, and mold creation. 
Initially, the excised thymus tissue was immersed in 10% 
neutral buffered formalin for an appropriate fixation period. 
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Subsequently, samples underwent dehydration through a 
graded series of ethanol solutions, followed by clarification in 
xylene baths. The processed samples were then placed in 
molten paraffin wax baths for one hour each to ensure 
complete infiltration, prior to being cast into metal molds to 
form tissue blocks. Blocks containing the embedded tissue 
fragments were then sectioned at a thickness of 7 µm using a 
microtome. The resulting sections were mounted on glass 
slides, dewaxed, rehydrated, and stained. After staining, the 
slides were air-dried and permanently mounted with a 
coverslip. The stained slides were subsequently 
photographed using a digital camera affixed to a light 
microscope (Houlot, 1984).   

2.6 Statistical study  

All quantitative results are presented as a mean ± 
standard deviation. Statistical analysis was performed using 
XLSTAT 2014.5.03 software. The significance of the 
differences between the control group and treated groups 
was assessed using a one-factor Analysis of Variance 
(ANOVA), followed by Tukey’s honestly significant 
difference (HSD) post-hoc test for multiple comparisons. 
Statistical significance was interpreted as follows:  

 ns: p > 0.05, indicating a non-significant difference;  
 *: 0.01 < p ≤ 0.05, indicating a significant difference;  
 **: 0.001 < p ≤ 0.01, indicating a highly significant 

difference;  
 ***: p ≤ 0.001, indicating a very highly significant 

difference compared to the control group.  

Additionally, comparisons specifically against the 
thiacloprid (THI) group were denoted using the following 
alpha levels: #p < 0.05, ##p < 0.01, and ###p < 0.001. To 
illustrate these results, graphs and histograms were generated 
using Microsoft Office Excel 2016. 

3 RESULTS AND DISCUSSION  
The methodological strategy of this study employed a pre- 

and postnatal exposure window, designed to highlight the 
susceptibility of offspring to the potential gestational and 
lactational transmission of thiacloprid (THI)-induced 

hematotoxicity. Human prenatal and postnatal exposure to 
environmental pollutants, including pesticides, has been 
associated with adverse developmental outcomes and the 
increased incidence of various adult-onset diseases (Gomez et 
al., 2020). THI, one of the most widely utilized neonicotinoid 
insecticides globally, functions as an agonist of nicotinic 
acetylcholine receptors (nAChRs), identical to nicotine. 
Consequently, it possesses the potential to exert toxic effects 
on rat offspring (Kammoun et al., 2019). 

Several investigations underscore a significant correlation 
between pregnant women's exposure to certain agricultural 
pesticides and the subsequent physiological impairments 
observed in their fetuses (Zamora et al., 2022; Albadrani et 
al., 2024). Within this context, exposure to thiacloprid 
during critical developmental periods, such as gestation and 
lactation may induce significant alterations in hematological 
profiles, immune responses, and hemostatic parameters, 
particularly in mammalian systems. Despite these concerns, 
scientific research on this specific interaction remains 
limited. Therefore, this study aimed to investigate the 
potential hematotoxic effects of THI and its impact on key 
physiological systems, thereby contributing to a better 
understanding of its risks. 

3.1 Complete Blood Count (CBC) 
Erythroid Lineage 

Our findings, detailed in Table 1 and 2, demonstrate 
significant alterations within the erythroid lineage in first-
generation (G1) rats exposed to thiacloprid. Specifically, 
there was a significant decrease (p < 0.05) in both the red 
blood cell (RBC) count and hemoglobin (HGB) level in 
THI-treated male and female G1 rats compared to the 
control group. Concurrently, a significant increase was 
observed in mean corpuscular volume (MCV) and 
hematocrit (HCT) level. These results suggest that 
thiacloprid exposure, via pre- and postnatal maternal 
transmission, induces notable effects on erythropoiesis, 
potentially indicative of an anemic state characterized by 
larger, but fewer, red blood cells. 

Table 1. Values of the different parameters of the red line of male control rats and treaties with thiacloprid (THI), Extract (EXT), 
and the combination (THI+EXT) of G1 

Parameters  
Groups  

GR 
1012/L 

MCV 
(fl) 

HGB 
g/dl 

HCT 
% 

CON  8.69 ± 0.90 43.44 ± 1.49 15.51 ± 0.49 38.81 ± 2.21 

THI  5.41 ± 0.48 * 69.94 ± 3.98 * 9.59 ± 1.50 * 56.06 ± 4.82 * 

EXT  8.18 ± 0.59 ns 44.30 ± 2.81 ns 14.12 ± 1.03 ns 41.96 ± 1.18 ## 
THI+EXT 8.19 ± 0.61 ns 45.21 ± 2.13 ns 14.64 ± 1.30 * 42.02 ± 1.34 ## 

Note: Values are means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not significant groups compared to control group, #р ≤ 0.05: significant; ##р ≤ 0.001: highly 
significant groups compared to Thiacloprid group. GR: Red blood cell; MCV: mean corpuscular volume; HGB: hemoglobin; HCT: hematocrit. 
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Conversely, in male G1 rats, treatment with the apricot 
kernel extract (EXT) and the combined THI+EXT group 
demonstrated a highly significant decrease in HCT 
compared to the THI group (p < 0.01 for specific 
comparisons). In female G1 rats, the EXT and THI+EXT 
groups exhibited a significant increase in RBC count and 
HGB (p < 0.05 for specific comparisons) and a decrease in 
MCV and HCT when compared to the THI group.  These 
observations indicate a protective and ameliorative effect of 
the apricot kernel extract against THI-induced erythroid 
toxicity, with gender-specific nuances in the restorative 
patterns. Our findings align with previous research; for 
instance, Chachoui et al. (2022) reported a significant 
decrease in HCT and hemoglobin concentration in animals 
following daily thiacloprid administration at a dose of 1 
mg/kg/day for 90 consecutive days. Similar variations in 
hematological parameters were also reported by Kataria et al. 
(2016) after imidacloprid (another neonicotinoid insecticide) 
treatment, albeit over a shorter, 24-hour exposure period. 

Leukocyte Lineage 

The results of this study reveal a significant increase (p < 
0.05) in the white blood cell (WBC) count in both male and 
female G1 rats treated with thiacloprid, relative to the 
control group (Figure 1). This observed increase leukocytosis 
could be attributed to an acute immune response triggered 
by pesticide toxicity, internal bleeding, or indeed, direct 
effects on bone marrow function and/or the pituitary-adrenal 
axis (Chachoui et al., 2022). A comparable increase in 
leukocyte counts has been observed in laboratory animals 
following prolonged administration of other insecticides, 
suggesting a common mechanism by which thiacloprid may 
induce similar systemic inflammatory or stress responses 
(Singla & Sandhu, 2015).  

Platelets  

Data from this study demonstrate a highly significant 
increase (p < 0.01) in blood platelet count in male and 
female G1 rats exposed to thiacloprid when compared to the 
control group. Conversely, the groups treated with EXT and 
the combined THI+EXT intervention exhibited a highly 

significant decrease in platelet count relative to the THI-
exposed group (Figure 2). This finding suggests that THI 
exposure may confer a risk of thrombosis through the 
promotion of platelet aggregation. This observation is 
corroborated by the work of Chakroun et al. (2016), who 
reported a significant increase in platelet count on rats 

treated with various doses of acetamiprid (10.85 - 21.7 - 
43.4 mg/kg) for 60 days.  

Lymphocytes  

Analyses of blood lymphocyte counts revealed a 
significant increase in the number of lymphocytes in both 
male and female G1 rats treated with thiacloprid, compared 
to the control group. In addition, a significant decrease in 
lymphocytes counts in female rats treated with the apricot 
kernel extract (EXT group), when compared to the 

Table 2. Values of the different parameters of the red line of female control rats and treaties with thiacloprid (THI), Extract (EXT), 
and the combination (THI+EXT) of G1 

Parameters  
Groups 

GR 
1012/L 

MCV 
(fl) 

HGB 
g/dl 

HCT 
% 

CON  6.84 ± 0.36 49.78 ± 1.43 15.51 ± 1.15 43.80 ± 1.27 
THI  5.11 ± 1.10 * 72.00 ± 3.74 * 9 .89 ± 0.44 * 56.18 ± 3.49 ** 
EXT  6.91 ± 0.71 ns 50.72 ± 1.83 ns 16.04 ± 1.54 # 42.17 ± 1.26 ## 
THI+EXT 8.21 ± 0.25 # 51.52 ± 1.03 # 15.75 ± 1.15 # 44.67 ± 0.64 ### 

Note: Values are means ± SD, (n= 7); *р ≤ 0.05: significant; **р ≤ 0.01: highly significant; ns p > 0.05: not significant groups compared to control group, #р ≤ 0.05: 
significant; ##р ≤ 0.001: highly significant; ###р ≤ 0.001: very highly significant groups compared to Thiacloprid group. GR: Red blood cell; MCV: mean corpuscular 
volume; HGB: hemoglobin; HCT: hematocrit. 

 

Figure 1. variation in white blood cell count of male and 
female control rats and treaties with thiacloprid (THI), 
Extract (EXT), and the combination (THI+EXT) 
Values expressed as means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not 
significant groups compared to control group. 
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Table 3. Percentage values of different cells obtained by blood smear analysis of male control rats and treaties with thiacloprid 
(THI), Extract (EXT), and the combination (THI+EXT) 

Cells  
Groups  

PN (%) PB (%) PE (%) Mono Abnormal cells 

CON 7.76 ± 0.74 0.77 ± 0.16 0.24 ± 0.053 21.73 ± 0.85 0.00 ± 0.00 
THI 17.86 ± 2.19* 4.57 ± 1.61** 1.71 ± 0.75 ** 30.14 ± 1.76 * 3.86 ± 2.11* 
EXT 8.57 ± 0.79# 0.88 ± 0.14## 0.12 ± 0.04 ## 20.41 ± 1.03 ns 0.00 ± 0.00# 
THI+EXT 10.43 ± 0.97# 0.97 ± 0.05 ### 0.48 ± 0.13 ## 21.85 ± 1.06 ns 0.00 ± 0.00 #  

Note: Values are means ± SD, (n= 7); *р ≤ 0.05: significant; **р ≤ 0.01: highly significant; ***р ≤ 0.001: very highly significant; ns p > 0.05: not significant groups 
compared to control group, #р ≤ 0.05: significant; ##р ≤ 0.001: highly significant; ###р ≤ 0.001: very highly significant groups compared to Thiacloprid group. Mono: 
monocyte cells, PN: neutrophils, PB: polynuclear basophils, PE: eosinophils. 

thiacloprid-only group (Figure 3). These results collectively 
suggest that thiacloprid may induce modulation of white 
blood cell populations, including lymphocytes, likely as an 
immune system response to pesticide-induced toxicity. This 
observation implies an activation of the immune system in 
an attempt to counteract the deleterious effects of thiacloprid 
(Gavel et al., 2019). Similar results have been reported 
following prolonged thiacloprid administration, as reported 
by (Aydin, 2011). 

3.2 Blood Smear Evaluation 
The results from the blood smear evaluation across the 

various experimental groups (THI, EXT, EXT + THI+EXT, 
and control groups (CON) are summarized in Tables 3 and 
4.  

 

 

 

 

 

 

 

 

In male G1 rats treated with THI, a significant increase 
was observed in the number of neutrophils (PN), monocytes, 
and atypical cells. A highly significant increase was also 
noted in basophils (PB) and eosinophils (PE) when 
compared to the control group. In contrast, the EXT and 
THI+EXT in male rats demonstrated a significant decrease 
in PN, PB, PE and atypical cells compared to the THI 
group.  

For female Generation 1 rats exposed to THI, a 
significant increase was recorded in PB and monocytes, 
coupled with a highly significant increase in PN and atypical 
cells. Conversely, the EXT and THI+EXT groups in female 
rats exhibited a significant decrease in PB and PN, a highly 
significant decrease in monocytes and atypical cells, and a 
very highly significant decrease in PE when compared to the 
THI group (Figure 4). 

 

 

 

 

 

 

 

 

Figure 2. Variation of platelets of male and female control rats 
and treaties with thiacloprid (THI), Extract (EXT), and the 
combination (THI+EXT) 
Values are means ± SD, (n= 7); **р ≤ 0.01: highly significant compared to 
control group, #р ≤ 0.05: significant, ##р ≤ 0.001: highly significant groups 
compared to Thiacloprid group. 

 

Figure 3. variation in lymphocytes count of male control rats 
and treaties with thiacloprid (THI), Extract (EXT), and the 
combination (THI+EXT) 
Values are means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not 
significant groups compared to control group, #р ≤ 0.05: significant groups 
compared to thiacloprid group. 
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Figure 5. Reticulocytes from the different groups of males (M) 
and females (F) rats  
(CON: control; EXT: extract; THI: Thiacloprid; THI+EXT: Thiacloprid + 
Extract). 1: reticulocytes; 2: platelet aggregate; 3: abnormal cell. 

Table 4. Percentage values of different cells obtained by blood smear analysis of female control rats and treaties with thiacloprid 
(THI), Extract (EXT), and the combination (THI+EXT) 

Cells  
Groups  

PN (%) PB (%) PE (%) Mono Abnormal cells 

CON 9.6 ± 0.35 1.31 ± 0.39 0.18 ± 0.07 20.15 ± 1.04 0.00 ± 0.00 
THI 18.70 ± 1.09 ** 5.71 ± 1.11 * 1.57 ± 0.53 *** 27.57 ± 2.44 * 3.71 ± 1.38 ** 
EXT 9.37 ± 0.60 # 1.09 ± 0.47 # 0.12 ± 0.04 ### 20.85 ± 0.89 ## 0.00 ± 0.00 ## 
THI+EXT 11.57 ± 0.53 # 1.71 ± 0.75 ns 0.30 ± 0.09 ### 21.85 ± 1.06 # 0.00 ± 0.00 ##  

Note: Values are means ± SD, (n= 7); *р ≤ 0.05: significant; **р ≤ 0.01: highly significant; ***р ≤ 0.001: very highly significant; ns p > 0.05: not significant groups 
compared to control group, #р ≤ 0.05: significant; ##р ≤ 0.001: highly significant; ###р ≤ 0.001: very highly significant groups compared to Thiacloprid group. Mono: 
monocyte cells, PN: neutrophils, PB: polynuclear basophils, PE: eosinophils. 

 

 
 
Figure 4. Blood smears from the different groups of males(M) 
and Female (F) rats  
(CON: control; EXT: extract; THI: Thiacloprid; THI+EXT: Thiacloprid + 
Extract).1: red blood cells; 2: platelets; 3: lymphocyte; 4: eosinophil; 5: 
neutrophil; 6: monocyte; 7: basophil. 
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These findings align with those reported by Chelly et al. 
(2019), who observed similar alterations in rats with 
acetamiprid (20 mg/kg for 21 days). Such changes in 
leukocyte populations suggest that neonicotinoids exposure 
may induce an inflammatory response, possibly due to tissue 
necrosis, thereby activating the immune system. Similar 
ameliorative effects exerted by plant extracts were reported 
by Omer et al. (2020).  

3.3 Reticulocyte levels  

The results of this study indicated a significant increase 
in reticulocytes levels in both male and female Generation 1 
rats treated with THI compared to the control group. 
Furthermore, a significant decrease in reticulocyte levels was 
observed in male rats treated with extract (EXT) when 
compared to the THI group (Figures 5 and 6). This 
elevation in reticulocytes in THI-exposed animals can be 
attributed to a compensatory hyperfunction of the bone 
marrow, which responds to the observed loss of hemoglobin 
and red blood cells by increasing the production of 
reticulocytes (Chelly et al., 2019). 

3.4  Prothrombin level (PT)  
The current study revealed a significant increase in 

prothrombin time (PT) in both male and female Generation 
1 rats treated with (THI) compared to the control group. In 
contrast, male rats in the THI+EXT group exhibited a 
significant decrease in prothrombin time relative to the THI 
group (see Figure 7). This assay assesses the extrinsic and 

common pathways of the coagulation cascade. Prior research 
has indicated that thiacloprid exposure can prolong 
prothrombin time, indicating impaired clotting ability. Such 
prolongation may signify a deficiency in coagulation factors 
such as Factor I (fibrinogen), Factor II (prothrombin), 
Factor V, Factor VII or Factor X. To the best of our 
knowledge, an extensive review of various bibliographic 
databases did not yield studies specifically investigating the 
effect of thiacloprid and hydroalcoholic extract of bitter 
apricot kernels on hemostasis parameters. However, the rich 
content of phenolic compounds and amygdalin in the 
apricot kernel extract may confer its observed preventive 
effect against this insecticide’s toxicity (Moradi et al., 2017). 

3.5 International Normalized Ratio (INR)  

Our results demonstrated a significant and highly 
significant decrease in INR in both male and female 
Generation 1 rats treated with thiacloprid respectively when 
compared to the control group, while the EXT and 
THI+EXT groups displayed a significant improvement in 
INR when compared to the THI group (Figure 8). While 
INR is a standardized indicator of blood clotting, there is 
currently no established evidence directly linking thiacloprid 
to INR variations in the existing literature. This highlights a 
gap in scientific research concerning the impact of this 
insecticide on human health, particularly regarding blood 
coagulation. 

 

 

 
Figure 6. Variation in reticulocyte count of male and female 
control rats and treaties with thiacloprid (THI), Extract 
(EXT), and the combination (THI+EXT).  
Values are means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not significant 
groups compared to control group, #р ≤ 0.05: significant groups compared to 
Thiacloprid group. 

 
Figure 7. Variation of prothrombin of male and female 
control rats and treaties with thiacloprid (THI), Extract 
(EXT), and the combination (THI+EXT).  
Values are means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not 
significant groups compared to control group. #р ≤ 0.05: significant groups 
compared to Thiacloprid group. 
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3.6 Kaolin Partial Thromboplastin Time 
(KPTT) 

The study also reported a significant increase in the level 
of KPTT in both male and female Generation 1 rats treated 
with THI compared to the control group. In contrast, a 
significant and very highly significant decrease in this 
parameter was noted in male and female rats, respectively, 
treated with the extract (EXT) when compared to the THI 
group (Figure 9). KPTT is an essential test employed to 
assess the intrinsic and the common pathways of 
coagulation. One study by Abdel Ghaffar et al. (2016), 
reported that thiacloprid exposure was associated with 
prolongation of KCT, which may indicate abnormalities in 
coagulation factors such as factors VIII, IX, XI and XII. 

3.7 Fibrinogen  

Regarding the fibrinogen assay, our results highlighted a 
significant increase in fibrinogen concentration in THI-
treated male and female Generation 1 rats compared with 
the CON group, with no significant variation was observed 
in the other treated groups (Figure 10). These findings 
suggest that thiacloprid exposure may influence blood 
fibrinogen levels; however, specific data on this interaction 
remain limited. Such disturbances in fibrinogen synthesis 
can predispose to coagulation disorders; however, dedicated 
studies focusing on THI and fibrinogen levels following 
gestational and lactational exposure are necessary to draw 
definitive conclusions (Chachoui et al., 2022). 

 

 

 
 
Figure 8. Variation of International Normalized Ratio of male 
control rats and treaties with thiacloprid (THI), Extract 
(EXT), and the combination (THI+EXT).  
Values are means ± SD, (n= 7); *р ≤ 0.05: significant, ***р ≤ 0.001:  very highly 
significant groups compared to control group. #р ≤ 0.05: significant, ##р ≤ 0.001: 
highly significant, ###р ≤ 0.001: very highly significant groups compared to 
Thiacloprid group. 
 
 

 
 
Figure 9. Variation of kaolin partial thromboplastin time of 
male control rats and treaties with thiacloprid (THI), Extract 
(EXT), and the combination (THI+EXT).  
Values are means ± SD, (n= 7); ns p > 0.05: not significant; *р ≤ 0.05: significant 
group compared to control group, #р ≤ 0.05: significant, ##р ≤ 0.01: highly 
significant groups compared to Thiacloprid group. 

 
 
Figure 10. Variation of Fibrinogen of male and female control 
rats and treaties with thiacloprid (THI), Extract (EXT), and 
the combination (THI+EXT). 
Values are means ± SD, (n= 7); ns p > 0.05: not significant; *р ≤ 0.05: significant, 
**р ≤ 0.01: highly significant groups compared to control group, #р ≤ 0.05: 
significant groups compared to Thiacloprid group. 
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3.8 Observation of Histological Changes 
in Thymus Tissue  

Figures 9 and 10 illustrate the microscopic analysis of 
thymic tissue sections obtained from male and female rats 
subjected to different treatments during gestation and 
lactation. The control and extract-treated groups exhibited a 
well-preserved thymic parenchyma, encapsulated by a thin 
fibrous capsule that extended the septa to delineate the 
lobules. Each lobule comprised a distinct medulla, 
characterized by sparsely distributed lymphocytes, blood 
vessels, and epithelial cells forming Hassall’s corpuscles, 
whereas the peripheral cortex was densely populated with 
small lymphocytes.  

Conversely, the thymic parenchyma of rats exposed to 
THI exhibited pronounced histopathological alterations, 
including extensive necrotic foci, abundant apoptotic bodies, 
and notable fat involution. In addition, hemorrhagic lesions 
were evident in the thymic tissue of both male and female 
THI-exposed rats. Notably, no significant anatomo-
histological variations were observed in the thymic sections of 
the THI+EXT group, indicating a potential protective effect 
of the extract against THI-induced thymic damage. 

Leboffe et al. (2020) determined that the acceptable daily 
intake of THI is 0.03 g/kg BW/day. Research indicates that 
THI exposure may induce oxidative stress within thymic cells, 
resulting in increased levels of reactive oxygen species (ROS). 
Oxidative stress is well-established as a key mediator in 
apoptosis and cellular damage, operating by disrupting 
essential cellular components and initiating programmed cell 
death through procaspase activation (Akash et al., 2020). 

Microscopic examination of thymic tissue from THI-
exposed rats revealed severe histopathological damage, 
characterized by the complete destruction of the thymic 
parenchyma, alongside the presence of necrotic foci and 
apoptotic bodies. In contrast, the thymic structure in the 
EXT-treated groups remained intact, exhibiting no significant 
histological abnormalities, suggesting a potential protective 
role of the extract against THI-induced toxicity. This cyto-
protective and preventive potential is likely attributable to the 
presence of phenolic compounds, well-known for their 
antioxidants and antiradicals properties (Moradi et al., 2017). 

Comparable structural damage to thymic tissue has been 
previously documented following short-term exposure to high 
doses of THI (e.g., 1.5, 2, 3.5, …… 60 mg/kg), resulting in 
pronounced tissue degeneration (Abou-Zeid et al., 2021; 
Şekeroğlu et al., 2020). Given the essential role of the thymus 
in immune regulation, such alterations could exert profound 
effects on immune function, potentially compromising 
immune responses and increasing susceptibility to 
inflammation and disease. This may also account for the 

observed changes in lymphocyte populations in THI-exposed 
rats within the present study. 

 
 
Figure 11. Histology of Female (F) rat thymus, of different 
groups of rats  
(CON, THI, EXT, THI+EXT). Tissues coloration was performed using a 
combination of two dyes, hematoxylin and eosin. The Arrow indicates 
necrosis of thymus cells, and the circle indicates apoptotic cells (C: Cortex; 
Me: Medulla). 

 
 
Figure 12. Histology of male (M) rat thymus, of different 
groups of rats  
(CON, THI, EXT, THI+EXT). Tissues coloration was performed using a 
combination of two dyes, hematoxylin and eosin. The Arrow indicates necrosis 
of thymus cells, and the circle indicates Hemorrhages tissue (C: Cortex; Me: 
Medulla). 
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The apricot kernel extract (EXT) has demonstrated 
cytoprotective effects on both the hematopoietic and immune 
systems, primarily attributed to its rich composition of 
bioactive compounds, such as phenolic compounds (Okada et 
al., 2013). Recent studies by Qin et al. (2019) have provided 
strong evidence that polyphenols play a crucial role in 
mitigating oxidative stress-related pathologies by enhancing 
endogenous antioxidant defense mechanisms, reducing 
cellular toxicity and preserving cellular integrity. This 
pharmacological efficacy can be attributed to the rich 
antioxidant composition of bitter apricot kernels, which 
contain essential constituents such as iron, potassium, 
amygdalin, and flavonoids. These bioactive compounds 
collectively exhibit a broad spectrum of biological activities, 
including antioxidants, anti-inflammatory, and antitumor 
effects (Li et al., 2016). Furthermore, bitter apricot kernel 
extract constitutes a valuable source of magnesium, 
polyphenols and carotenoids, which contribute to its 
antioxidant, anticancer, anti-asthmatic, and anti-
inflammatory properties (Moradi et al., 2017; Kopčeková et 
al., 2017; and Kovacikova et al., 2019). 

In summary, although bitter apricot kernels have unveiled 
beneficial effects on hematopoietic and immune functions, as 
demonstrated by Kovacikova et al. (2019), in a 14-day 
treatment study in rabbits at various doses, their consumption 
should be carefully monitored due to the presence of 
potentially toxic compounds. 

3.9 Limitations of the study  

The present investigation, while yielding valuable 
insights into the hematopoietic and immune toxicity 
induced by maternal exposure to thiacloprid during gestation 
and lactation in first-generation (G1) rats, as well as the 
potential protective effects of bitter apricot kernel extract, is 
subject to several inherent limitations that warrant 
acknowledgment. 

Selection Bias: A potential limitation of this study 
resides in the possibility of selection bias. The selection of 
experimental animals and the allocation to treatment groups 
may not have been entirely randomized, this could 
compromise the external validity of the findings, thereby 
affecting their generalizability. Future studies should aim to 
prioritize the minimization of selection bias by employing 
more rigorous randomization methodologies and by 
ensuring a more diverse and representative sample. 

Confounding Variables: Potential confounding 
variables include factors such as the genetic variability among 
the rats, prevailing environmental conditions (e.g., 
temperature and humidity), and variations in the 
standardized diet provided to the subjects. These factors 
possess the capacity to exert an independent influence on the 

observed outcomes related to the hematopoietic and immune 
systems, distinct from the effects of thiacloprid exposure or 
bitter almond of apricot kernel extract treatment. 
Subsequent studies should aim to control these variables 
more rigorously to isolate the effects of pesticide and 
protective intervention. 

Limited Follow-Up Period: The duration of follow-up 
period in this study was limited to gestation and lactation. 
This relatively short timeframe may not fully capture the 
long-term effects of thiacloprid exposure or the sustained 
protective potential of bitter apricot kernel extract on the 
hematopoietic and immune systems. Such a limited 
timeframe prevents the assessment of chronic outcomes that 
may occur later in life. Future research should incorporate 
extended follow-up periods to evaluate the prolonged 
impacts and the enduring efficacy of the protective 
intervention.  

Statistical Power: The statistical power of this study 
may be constrained by the relatively small sample size and 
the inherent biological variability observed within the 
experimental groups. A more modest sample size can reduce 
the capacity to detect significant differences or biological 
effects, especially when dealing with nuanced physiological 
variations. 

4 CONCLUSIONS  

In conclusion, this study unequivocally highlights the 
toxicological effects of thiacloprid on both the hematopoietic 
system and the immune system following exposure during 
critical gestational and lactational periods. Concurrently, the 
findings offer promising evidence of the preventive efficacy 
of the hydroalcoholic extract derived from bitter almond 
apricot kernels against these adverse systemic effects. The 
obtained results underline the critical imperative for 
continued research to deepen the understanding and 
minimize the adverse effects of pesticides on offspring health 
and development. 
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	1 Introduction
	Neonicotinoids represent an emerging class of insecticides developed as an alternative to organophosphate and carbamate compounds, recognized for their established toxicity. This family of insecticides is extensively employed in agriculture for pest control due to its broad spectrum of action (Schaafsma et al., 2015). Their mode of action involves binding to nicotinic acetylcholine receptors (nAChRs), leading to hyperexcitation, abnormal paralysis, and ultimately the demise of target organisms (Chen et al., 2014). This class comprises seven chemical variants; imidacloprid, thiamethoxam, clothianidin, thiacloprid, acetamiprid, dinotefuran, and nitonpyrem (Pang et al., 2020). Among these, Thiacloprid (THI) is predominantly utilized in Algeria. As a chloroprynydilic neonicotinoid, THI shares the common mechanism of blocking acetylcholine receptors (Galdikova et al., 2019) and was registered in 2000 under the trade name Calypso® 480SC (480 g.L-1) (Schwarzbacherová et al., 2019). 
	Recent research indicates that THI exhibits toxicity in mammals, both acutely and chronically across a range of dosages. Its adverse effects manifest as neurotoxicity (EFSA, 2019), hepatotoxicity and nephrotoxicity (Vivek & Jain, 2020), and endocrine disruptions (Sekeroglu et al., 2014). Furthermore, this insecticide exerts deleterious effects on hematological parameters. Recent studies have demonstrated that thiacloprid exposure can lead to decreased red blood cells, white blood cells, hematocrit, hemoglobin, mean corpuscular volume, and platelet count, concurrently increasing the osmotic fragility of erythrocytes in equine and bovine blood samples (Arrigo et al., 2023). It has also been associated with genotoxic and cytotoxic effects on bovine whole blood cells, inducing DNA damage, chromosomal aberrations, sister chromatid exchanges, and micronucleus formation (Galdíková et al.; 2015; Galdíková et al., 2022). Additionally, THI interacts with calf thymus DNA, altering its structure and stability through direct binding (Verebová et al., 2019). 
	Within the toxicopathological context, several medicinal plants are recognized for their cytoprotective properties, thereby possessing the potential to prevent or ameliorate various pathological aspects induced by insecticides and other environmental pollutants. These plants are conventionally employed in traditional medicine as whole plants or in the form of extracts. Bitter apricot kernels (Prunus armeniaca L.) are known to possess several traditional medicinal properties, including those related to pulmonary health, digestive regulation, and trauma management (Al-Juhaimi et al., 2021). These kernels are notably rich in monounsaturated fatty acids, vitamin E, carotenoids and amygdalin, rendering them a valuable source of bioactive compounds (Al-Juhaimi et al., 2018). Moreover, bitter apricot kernels extract has demonstrated neuroprotective potential against thiacloprid-induced toxicity, by restoring mitochondrial redox homeostasis, preventing cognitive impairment, and mitigating brain tissue damage (Djellal et al., 2022). 
	Building on these preliminary findings that highlight the potential involvement of thiacloprid and bitter apricot kernels in mammalian health, the present study aimed to contribute to the assessment of thiacloprid's toxic effects particularly on the hematopoietic and immune systems, in rats exposed during the gestational and lactational windows. Concurrently, this search seeks to valuate the cytoprotective effect of the hydroalcoholic extract derived from bitter almonds of the apricot kernels against these documented toxicities. 
	2 Material and Methods 
	2.1 Harvesting, Drying of Plant Material and Extraction
	The study utilized bitter almonds obtained from apricot (Prunus armeniaca L.) harvested in Ain-Elkhadra, M'sila, Algeria, between May and July 2022. Upon collection, the kernels were meticulously extracted, subsequently crushed, dried, and then ground into a fine powder. The extraction process was conducted in accordance with the method described by Minaiyan et al. (2014), which involved a 72-hour maceration period in aqueous ethanol. Following maceration, the mixture was filtered, and the filtrate was subjected to drying at 40°C to obtain the dry hydroalcoholic extract. The resulting residue was stored at 4°C for subsequent use.
	2.2 Animal Husbandry
	Wistar albino rats were procured from the Pasteur Institute in Algiers. Upon arrival, the animals underwent a two-week acclimatization period. Throughout the study, rats were maintained under standard laboratory conditions, with ad libitum access to food and water. Environmental controls included a controlled ambient temperature of 22±2∘C, a relative humidity of 50±10%, and a 12-hour light/dark cycle. 
	2.3 Chemical Agent, Extract Dose, and Animal Treatment Protocol
	The study employed thiacloprid, a commercial-grade pesticide, for the experimental treatment of rats. The selected dose of THI was 0.020 mg/kg/day, determined based on its documented presence in biological matrices such as fresh tomatoes (Omirou et al., 2009). This environmental concentration was converted to a daily dose for rats using a conversion factor of 0.05 (EFSA, 2011). A hydroalcoholic extract of bitter apricot kernels, at a dose of 50 mg/kg/day, was administered as a putative preventive treatment against thiacloprid toxicity (Kovacova et al., 2020). 
	Following the 15-day acclimatization period, nulliparous female Wistar rats were mated with males (two females per male, overnight). The following morning, vaginal smears were microscopically examined to confirm evidence of gestation. This day was designated as gestational day 0. Pregnant rats were randomly assigned to one of four experimental groups: 
	 Control (CON) Group: Received distilled water orally throughout the gestation and lactation periods.
	 Thiacloprid (THI) Group: Received 0.020 mg/kg/day of THI orally throughout the gestation and lactation periods.
	 Extract (EXT) Group: Received 50 mg/kg/day of the hydroalcoholic extract of bitter apricot kernels orally throughout the gestation and lactation periods.
	 Thiacloprid + Extract (THI+EXT) Group: Received concurrent oral administrations of 0.020 mg/kg/day of THI and 50 mg/kg/day of the hydroalcoholic extract throughout the gestation and lactation periods.
	2.4 Evaluation of First-Generation (G1) Offspring
	The study focused on evaluating the hematotoxicity of thiacloprid (THI) and the preventive effect of bitter almond extract from apricot kernels in first-generation (G1) adult male and female rats. At the conclusion of the experimental period, the G1 rats were sacrificed, and blood samples were collected for biochemical and hematological analyses. These analyses included a complete blood count (CBC), preparation and examination of blood smear, determination of reticulocyte count, measurement of prothrombin time (PT), activated partial thromboplastin time (aPPT), and fibrinogen levels. Additionally, histological examination of thymic tissue was performed to assess structural integrity.  All specified parameters were evaluated using SPINREACT spectrophotometric reagent kits and automated analytical equipment. The experimental protocols adhered strictly to ethical guidelines and received approval from the committee of the ‘’Algerian Association of Sciences in Animal Experimentation’’ under law No.88-08/1988, related to veterinary medical activities and animal health protection (N° JORA:004/1988).
	Complete Blood Count (CBC)
	The Complete Blood Count (CBC) was performed to ascertain the quantitative and qualitative composition of blood cellular components. Blood samples from G1 rats were collected into hematocrit capillaries and EDTA-anticoagulated tubes. To ensure accuracy, cytological and platelet count analyses were conducted within two hours of blood collection. Specialized automated devices were utilized to enumerate various blood cell types based on their specific characteristics (Diakite et al., 2017).
	Blood Smear Examination
	The blood smear examination involved microscopic visualization of blood cellular elements (Cloutier et al., 2014). A small blood sample obtained from orbital sinus of each rat was transferred to an EDTA-anticoagulated tube. A single drop of whole blood was then placed on a microscope slide, uniformly spread via capillary action, and air-dried. The prepared smear was then stained with May-Grünwald Giemsa (MGG) stain and examined under a light microscope (Piaton et al., 2015). Interpretation takes into account cell size, shape, appearance, hemoglobin content, and white blood cell types and percentages (Ghosh et al., 2016).
	Reticulocyte Count
	Reticulocytes represent immature erythrocytes released into the bloodstream from the bone marrow following erythropoiesis (Cowgill et al., 2003). The reticulocyte identification is based on the presence of residual ribosomal RNA, which appears as bright blue filaments and granulations upon supravital staining. For analysis, whole blood was mixed with a specific reticulocyte dye, allowed to stand for 15 minutes, and then used to prepare a blood smear. The reticulocyte count was performed by enumerating reticulocytes among 500 red blood cells, as described by Bellier & Cordonnier (2010). 
	Prothrombin Time (PT)
	Prothrombin time (PT) is a crucial essay employed to measure the extrinsic pathway of blood coagulation and identify deficiencies in extrinsic coagulation factors (Hafian et al., 2003). This assay measures the time required for clot formation after the addition of thromboplastin—a tissue extract rich in tissue factor, phospholipids, and calcium—to platelet-poor plasma. Coagulation is initiated by the activation of Factor VII by tissue factor. The results of the Quick time were expressed in seconds relative to a control (Ref. 1709222. SPINREACT, 2015).
	International Normalized Ratio (INR) 
	The International Normalized Ratio (INR) serves as a standardized measure for PT results, particularly relevant for comparative purposes across different laboratories. The INR was calculated as the ratio between the prothrombin time of the treated rat and that of the control group, utilizing the following formula by Laoudy et al. (2016): 
	INR= Patient PTControl PTISI 
	Kaolin Partial Thromboplastin Time (KPTT)
	The Kaolin Partial Thromboplastin Time (KPTT) measures the clotting time of recalcified platelet-poor plasma in the presence of phospholipids (cephalin) and an activator, kaolin (Ignjatovic, 2013). This assay is employed to assess the integrity of intrinsic pathway of plasma coagulation and its results are expressed in seconds (Crighton, 2013).
	Fibrinogen Measurement
	Fibrinogen, a pivotal protein present in blood plasma and synthesized by the liver, is determined by the thrombin clotting time, which is inversely proportional to the concentration of fibrinogen within the plasma sample (Stang & Mitchell, 2013).
	2.5 Histological study 
	Histological processing of thymic tissue involved a sequence of standard laboratory procedures: fixation, dehydration, clarification, paraffin baths, and mold creation. Initially, the excised thymus tissue was immersed in 10% neutral buffered formalin for an appropriate fixation period. Subsequently, samples underwent dehydration through a graded series of ethanol solutions, followed by clarification in xylene baths. The processed samples were then placed in molten paraffin wax baths for one hour each to ensure complete infiltration, prior to being cast into metal molds to form tissue blocks. Blocks containing the embedded tissue fragments were then sectioned at a thickness of 7 µm using a microtome. The resulting sections were mounted on glass slides, dewaxed, rehydrated, and stained. After staining, the slides were air-dried and permanently mounted with a coverslip. The stained slides were subsequently photographed using a digital camera affixed to a light microscope (Houlot, 1984).  
	2.6 Statistical study 
	All quantitative results are presented as a mean ± standard deviation. Statistical analysis was performed using XLSTAT 2014.5.03 software. The significance of the differences between the control group and treated groups was assessed using a one-factor Analysis of Variance (ANOVA), followed by Tukey’s honestly significant difference (HSD) post-hoc test for multiple comparisons. Statistical significance was interpreted as follows: 
	 ns: p > 0.05, indicating a non-significant difference; 
	 *: 0.01 < p ≤ 0.05, indicating a significant difference; 
	 **: 0.001 < p ≤ 0.01, indicating a highly significant difference; 
	 ***: p ≤ 0.001, indicating a very highly significant difference compared to the control group. 
	Additionally, comparisons specifically against the thiacloprid (THI) group were denoted using the following alpha levels: #p < 0.05, ##p < 0.01, and ###p < 0.001. To illustrate these results, graphs and histograms were generated using Microsoft Office Excel 2016.
	3 Results and discussion 
	The methodological strategy of this study employed a pre- and postnatal exposure window, designed to highlight the susceptibility of offspring to the potential gestational and lactational transmission of thiacloprid (THI)-induced hematotoxicity. Human prenatal and postnatal exposure to environmental pollutants, including pesticides, has been associated with adverse developmental outcomes and the increased incidence of various adult-onset diseases (Gomez et al., 2020). THI, one of the most widely utilized neonicotinoid insecticides globally, functions as an agonist of nicotinic acetylcholine receptors (nAChRs), identical to nicotine. Consequently, it possesses the potential to exert toxic effects on rat offspring (Kammoun et al., 2019).
	Several investigations underscore a significant correlation between pregnant women's exposure to certain agricultural pesticides and the subsequent physiological impairments observed in their fetuses (Zamora et al., 2022; Albadrani et al., 2024). Within this context, exposure to thiacloprid during critical developmental periods, such as gestation and lactation may induce significant alterations in hematological profiles, immune responses, and hemostatic parameters, particularly in mammalian systems. Despite these concerns, scientific research on this specific interaction remains limited. Therefore, this study aimed to investigate the potential hematotoxic effects of THI and its impact on key physiological systems, thereby contributing to a better understanding of its risks.
	3.1 Complete Blood Count (CBC)
	Erythroid Lineage
	Our findings, detailed in Table 1 and 2, demonstrate significant alterations within the erythroid lineage in first-generation (G1) rats exposed to thiacloprid. Specifically, there was a significant decrease (p < 0.05) in both the red blood cell (RBC) count and hemoglobin (HGB) level in THI-treated male and female G1 rats compared to the control group. Concurrently, a significant increase was observed in mean corpuscular volume (MCV) and hematocrit (HCT) level. These results suggest that thiacloprid exposure, via pre- and postnatal maternal transmission, induces notable effects on erythropoiesis, potentially indicative of an anemic state characterized by larger, but fewer, red blood cells.
	Conversely, in male G1 rats, treatment with the apricot kernel extract (EXT) and the combined THI+EXT group demonstrated a highly significant decrease in HCT compared to the THI group (p < 0.01 for specific comparisons). In female G1 rats, the EXT and THI+EXT groups exhibited a significant increase in RBC count and HGB (p < 0.05 for specific comparisons) and a decrease in MCV and HCT when compared to the THI group.  These observations indicate a protective and ameliorative effect of the apricot kernel extract against THI-induced erythroid toxicity, with gender-specific nuances in the restorative patterns. Our findings align with previous research; for instance, Chachoui et al. (2022) reported a significant decrease in HCT and hemoglobin concentration in animals following daily thiacloprid administration at a dose of 1 mg/kg/day for 90 consecutive days. Similar variations in hematological parameters were also reported by Kataria et al. (2016) after imidacloprid (another neonicotinoid insecticide) treatment, albeit over a shorter, 24-hour exposure period.
	Leukocyte Lineage
	The results of this study reveal a significant increase (p < 0.05) in the white blood cell (WBC) count in both male and female G1 rats treated with thiacloprid, relative to the control group (Figure 1). This observed increase leukocytosis could be attributed to an acute immune response triggered by pesticide toxicity, internal bleeding, or indeed, direct effects on bone marrow function and/or the pituitary-adrenal axis (Chachoui et al., 2022). A comparable increase in leukocyte counts has been observed in laboratory animals following prolonged administration of other insecticides, suggesting a common mechanism by which thiacloprid may induce similar systemic inflammatory or stress responses (Singla & Sandhu, 2015). 
	Platelets 
	Data from this study demonstrate a highly significant increase (p < 0.01) in blood platelet count in male and female G1 rats exposed to thiacloprid when compared to the control group. Conversely, the groups treated with EXT and the combined THI+EXT intervention exhibited a highly significant decrease in platelet count relative to the THI-exposed group (Figure 2). This finding suggests that THI exposure may confer a risk of thrombosis through the promotion of platelet aggregation. This observation is corroborated by the work of Chakroun et al. (2016), who reported a significant increase in platelet count on rats treated with various doses of acetamiprid (10.85 - 21.7 - 43.4 mg/kg) for 60 days. 
	Lymphocytes 
	Analyses of blood lymphocyte counts revealed a significant increase in the number of lymphocytes in both male and female G1 rats treated with thiacloprid, compared to the control group. In addition, a significant decrease in lymphocytes counts in female rats treated with the apricot kernel extract (EXT group), when compared to the thiacloprid-only group (Figure 3). These results collectively suggest that thiacloprid may induce modulation of white blood cell populations, including lymphocytes, likely as an immune system response to pesticide-induced toxicity. This observation implies an activation of the immune system in an attempt to counteract the deleterious effects of thiacloprid (Gavel et al., 2019). Similar results have been reported following prolonged thiacloprid administration, as reported by (Aydin, 2011).
	3.2 Blood Smear Evaluation
	The results from the blood smear evaluation across the various experimental groups (THI, EXT, EXT + THI+EXT, and control groups (CON) are summarized in Tables 3 and 4. 
	In male G1 rats treated with THI, a significant increase was observed in the number of neutrophils (PN), monocytes, and atypical cells. A highly significant increase was also noted in basophils (PB) and eosinophils (PE) when compared to the control group. In contrast, the EXT and THI+EXT in male rats demonstrated a significant decrease in PN, PB, PE and atypical cells compared to the THI group. 
	For female Generation 1 rats exposed to THI, a significant increase was recorded in PB and monocytes, coupled with a highly significant increase in PN and atypical cells. Conversely, the EXT and THI+EXT groups in female rats exhibited a significant decrease in PB and PN, a highly significant decrease in monocytes and atypical cells, and a very highly significant decrease in PE when compared to the THI group (Figure 4).
	These findings align with those reported by Chelly et al. (2019), who observed similar alterations in rats with acetamiprid (20 mg/kg for 21 days). Such changes in leukocyte populations suggest that neonicotinoids exposure may induce an inflammatory response, possibly due to tissue necrosis, thereby activating the immune system. Similar ameliorative effects exerted by plant extracts were reported by Omer et al. (2020). 
	3.3 Reticulocyte levels 
	The results of this study indicated a significant increase in reticulocytes levels in both male and female Generation 1 rats treated with THI compared to the control group. Furthermore, a significant decrease in reticulocyte levels was observed in male rats treated with extract (EXT) when compared to the THI group (Figures 5 and 6). This elevation in reticulocytes in THI-exposed animals can be attributed to a compensatory hyperfunction of the bone marrow, which responds to the observed loss of hemoglobin and red blood cells by increasing the production of reticulocytes (Chelly et al., 2019).
	3.4 Prothrombin level (PT) 
	The current study revealed a significant increase in prothrombin time (PT) in both male and female Generation 1 rats treated with (THI) compared to the control group. In contrast, male rats in the THI+EXT group exhibited a significant decrease in prothrombin time relative to the THI group (see Figure 7). This assay assesses the extrinsic and common pathways of the coagulation cascade. Prior research has indicated that thiacloprid exposure can prolong prothrombin time, indicating impaired clotting ability. Such prolongation may signify a deficiency in coagulation factors such as Factor I (fibrinogen), Factor II (prothrombin), Factor V, Factor VII or Factor X. To the best of our knowledge, an extensive review of various bibliographic databases did not yield studies specifically investigating the effect of thiacloprid and hydroalcoholic extract of bitter apricot kernels on hemostasis parameters. However, the rich content of phenolic compounds and amygdalin in the apricot kernel extract may confer its observed preventive effect against this insecticide’s toxicity (Moradi et al., 2017).
	3.5 International Normalized Ratio (INR) 
	Our results demonstrated a significant and highly significant decrease in INR in both male and female Generation 1 rats treated with thiacloprid respectively when compared to the control group, while the EXT and THI+EXT groups displayed a significant improvement in INR when compared to the THI group (Figure 8). While INR is a standardized indicator of blood clotting, there is currently no established evidence directly linking thiacloprid to INR variations in the existing literature. This highlights a gap in scientific research concerning the impact of this insecticide on human health, particularly regarding blood coagulation.
	Kaolin Partial Thromboplastin Time (KPTT)
	The study also reported a significant increase in the level of KPTT in both male and female Generation 1 rats treated with THI compared to the control group. In contrast, a significant and very highly significant decrease in this parameter was noted in male and female rats, respectively, treated with the extract (EXT) when compared to the THI group (Figure 9). KPTT is an essential test employed to assess the intrinsic and the common pathways of coagulation. One study by Abdel Ghaffar et al. (2016), reported that thiacloprid exposure was associated with prolongation of KCT, which may indicate abnormalities in coagulation factors such as factors VIII, IX, XI and XII.
	3.7 Fibrinogen 
	Regarding the fibrinogen assay, our results highlighted a significant increase in fibrinogen concentration in THI-treated male and female Generation 1 rats compared with the CON group, with no significant variation was observed in the other treated groups (Figure 10). These findings suggest that thiacloprid exposure may influence blood fibrinogen levels; however, specific data on this interaction remain limited. Such disturbances in fibrinogen synthesis can predispose to coagulation disorders; however, dedicated studies focusing on THI and fibrinogen levels following gestational and lactational exposure are necessary to draw definitive conclusions (Chachoui et al., 2022).
	Observation of Histological Changes in Thymus Tissue 
	Figures 9 and 10 illustrate the microscopic analysis of thymic tissue sections obtained from male and female rats subjected to different treatments during gestation and lactation. The control and extract-treated groups exhibited a well-preserved thymic parenchyma, encapsulated by a thin fibrous capsule that extended the septa to delineate the lobules. Each lobule comprised a distinct medulla, characterized by sparsely distributed lymphocytes, blood vessels, and epithelial cells forming Hassall’s corpuscles, whereas the peripheral cortex was densely populated with small lymphocytes. 
	Conversely, the thymic parenchyma of rats exposed to THI exhibited pronounced histopathological alterations, including extensive necrotic foci, abundant apoptotic bodies, and notable fat involution. In addition, hemorrhagic lesions were evident in the thymic tissue of both male and female THI-exposed rats. Notably, no significant anatomo-histological variations were observed in the thymic sections of the THI+EXT group, indicating a potential protective effect of the extract against THI-induced thymic damage.
	Leboffe et al. (2020) determined that the acceptable daily intake of THI is 0.03 g/kg BW/day. Research indicates that THI exposure may induce oxidative stress within thymic cells, resulting in increased levels of reactive oxygen species (ROS). Oxidative stress is well-established as a key mediator in apoptosis and cellular damage, operating by disrupting essential cellular components and initiating programmed cell death through procaspase activation (Akash et al., 2020).
	Microscopic examination of thymic tissue from THI-exposed rats revealed severe histopathological damage, characterized by the complete destruction of the thymic parenchyma, alongside the presence of necrotic foci and apoptotic bodies. In contrast, the thymic structure in the EXT-treated groups remained intact, exhibiting no significant histological abnormalities, suggesting a potential protective role of the extract against THI-induced toxicity. This cyto-protective and preventive potential is likely attributable to the presence of phenolic compounds, well-known for their antioxidants and antiradicals properties (Moradi et al., 2017).
	Comparable structural damage to thymic tissue has been previously documented following short-term exposure to high doses of THI (e.g., 1.5, 2, 3.5, …… 60 mg/kg), resulting in pronounced tissue degeneration (Abou-Zeid et al., 2021; Şekeroğlu et al., 2020). Given the essential role of the thymus in immune regulation, such alterations could exert profound effects on immune function, potentially compromising immune responses and increasing susceptibility to inflammation and disease. This may also account for the observed changes in lymphocyte populations in THI-exposed rats within the present study.
	The apricot kernel extract (EXT) has demonstrated cytoprotective effects on both the hematopoietic and immune systems, primarily attributed to its rich composition of bioactive compounds, such as phenolic compounds (Okada et al., 2013). Recent studies by Qin et al. (2019) have provided strong evidence that polyphenols play a crucial role in mitigating oxidative stress-related pathologies by enhancing endogenous antioxidant defense mechanisms, reducing cellular toxicity and preserving cellular integrity. This pharmacological efficacy can be attributed to the rich antioxidant composition of bitter apricot kernels, which contain essential constituents such as iron, potassium, amygdalin, and flavonoids. These bioactive compounds collectively exhibit a broad spectrum of biological activities, including antioxidants, anti-inflammatory, and antitumor effects (Li et al., 2016). Furthermore, bitter apricot kernel extract constitutes a valuable source of magnesium, polyphenols and carotenoids, which contribute to its antioxidant, anticancer, anti-asthmatic, and anti-inflammatory properties (Moradi et al., 2017; Kopčeková et al., 2017; and Kovacikova et al., 2019).
	In summary, although bitter apricot kernels have unveiled beneficial effects on hematopoietic and immune functions, as demonstrated by Kovacikova et al. (2019), in a 14-day treatment study in rabbits at various doses, their consumption should be carefully monitored due to the presence of potentially toxic compounds.
	3.9 Limitations of the study 
	The present investigation, while yielding valuable insights into the hematopoietic and immune toxicity induced by maternal exposure to thiacloprid during gestation and lactation in first-generation (G1) rats, as well as the potential protective effects of bitter apricot kernel extract, is subject to several inherent limitations that warrant acknowledgment.
	Selection Bias: A potential limitation of this study resides in the possibility of selection bias. The selection of experimental animals and the allocation to treatment groups may not have been entirely randomized, this could compromise the external validity of the findings, thereby affecting their generalizability. Future studies should aim to prioritize the minimization of selection bias by employing more rigorous randomization methodologies and by ensuring a more diverse and representative sample.
	Confounding Variables: Potential confounding variables include factors such as the genetic variability among the rats, prevailing environmental conditions (e.g., temperature and humidity), and variations in the standardized diet provided to the subjects. These factors possess the capacity to exert an independent influence on the observed outcomes related to the hematopoietic and immune systems, distinct from the effects of thiacloprid exposure or bitter almond of apricot kernel extract treatment. Subsequent studies should aim to control these variables more rigorously to isolate the effects of pesticide and protective intervention.
	Limited Follow-Up Period: The duration of follow-up period in this study was limited to gestation and lactation. This relatively short timeframe may not fully capture the long-term effects of thiacloprid exposure or the sustained protective potential of bitter apricot kernel extract on the hematopoietic and immune systems. Such a limited timeframe prevents the assessment of chronic outcomes that may occur later in life. Future research should incorporate extended follow-up periods to evaluate the prolonged impacts and the enduring efficacy of the protective intervention. 
	Statistical Power: The statistical power of this study may be constrained by the relatively small sample size and the inherent biological variability observed within the experimental groups. A more modest sample size can reduce the capacity to detect significant differences or biological effects, especially when dealing with nuanced physiological variations.
	4 Conclusions
	In conclusion, this study unequivocally highlights the toxicological effects of thiacloprid on both the hematopoietic system and the immune system following exposure during critical gestational and lactational periods. Concurrently, the findings offer promising evidence of the preventive efficacy of the hydroalcoholic extract derived from bitter almond apricot kernels against these adverse systemic effects. The obtained results underline the critical imperative for continued research to deepen the understanding and minimize the adverse effects of pesticides on offspring health and development.
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		ABSTRACT

		ARTICLE INFORMATION



		Background: Thiacloprid, a neonicotinoid insecticide, is known to accumulate in various fruits and vegetables, including fresh tomatoes. There is escalating concern about the potential health risks associated with its exposure, particularly during vulnerable periods such as gestation and lactation. While previous studies have indicated adverse effects of neonicotinoids on diverse physiological systems, information on their impact on the hematopoietic and immune systems at low doses remains limited.

Aims: The aim of this study was to evaluate the toxicity of thiacloprid at a microdose of 0.02 mg/kg and to assess the preventive effects of the hydroalcoholic extract derived from bitter almond apricot kernels (at a dose of 50 mg/kg) on the hematopoietic and immune systems during gestation (approximately 19 to 21 days) and lactation (approximately 3 to 4 weeks) in male and female Generation 1 (G1) rats.

Methods: The investigation employed several methodological approaches to examine the effects of thiacloprid and the putative protective potential of the extract. Hematological and immunological parameters were evaluated using automated systems and specialized kits. Rats were systematically allocated into distinct experimental groups, including those exposed to thiacloprid and those concurrently treated with the apricot kernel extract, to observe the impacts on blood and immune parameters. Furthermore, histological analyses of the thymic tissue were performed to assess structural alterations induced by thiacloprid exposure and to ascertain the potential protective effects of the extract. 

Results: The results revealed a significant reduction in erythrocyte count, hematocrit, hemoglobin (HGB), and fibrinogen concentrations in rats exposed to thiacloprid. Conversely, a significant increase was observed in total white blood cell count, lymphocyte count, platelet count, mean corpuscular volume (MCV), reticulocyte levels, prothrombin time (PT), and activated partial thromboplastin time (aPTT). However, treatment with the apricot kernel extract led to notable amelioration of these perturbed parameters across the treated groups, indicative of a protective effect. Histological examination of thymic tissue from thiacloprid-exposed rats demonstrated severe histopathological damage, characterized by profound destruction of the thymic parenchyma, multifocal necrotic lesions, and the presence of numerous apoptotic bodies. In contrast, the thymic architecture remained intact in the extract-treated groups, with no significant histological abnormalities, thereby further corroborating the protective potential of the apricot kernel extract.

Conclusions: Exposure to thiacloprid, even at a microdose, can induce discernible toxicity within the hematopoietic and immune systems during critical development stages. Nevertheless, the hydroalcoholic extract of bitter almond from apricot kernels appears to safeguard the cellular integrity of blood and its parameters against the toxic effects of this insecticide, likely attributable to its beneficial phytochemical constituents. 

Keywords: Thiacloprid toxicity; Bitter apricot kernel extract; Hematopoietic and Immune systems; Gestation and Lactation; Thymus histology.
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2 INTRODUCTION

Neonicotinoids represent an emerging class of insecticides developed as an alternative to organophosphate and carbamate compounds, recognized for their established toxicity. This family of insecticides is extensively employed in agriculture for pest control due to its broad spectrum of action (Schaafsma et al., 2015). Their mode of action involves binding to nicotinic acetylcholine receptors (nAChRs), leading to hyperexcitation, abnormal paralysis, and ultimately the demise of target organisms (Chen et al., 2014). This class comprises seven chemical variants; imidacloprid, thiamethoxam, clothianidin, thiacloprid, acetamiprid, dinotefuran, and nitonpyrem (Pang et al., 2020). Among these, Thiacloprid (THI) is predominantly utilized in Algeria. As a chloroprynydilic neonicotinoid, THI shares the common mechanism of blocking acetylcholine receptors (Galdikova et al., 2019) and was registered in 2000 under the trade name Calypso® 480SC (480 g.L-1) (Schwarzbacherová et al., 2019). 

Recent research indicates that THI exhibits toxicity in mammals, both acutely and chronically across a range of dosages. Its adverse effects manifest as neurotoxicity (EFSA, 2019), hepatotoxicity and nephrotoxicity (Vivek & Jain, 2020), and endocrine disruptions (Sekeroglu et al., 2014). Furthermore, this insecticide exerts deleterious effects on hematological parameters. Recent studies have demonstrated that thiacloprid exposure can lead to decreased red blood cells, white blood cells, hematocrit, hemoglobin, mean corpuscular volume, and platelet count, concurrently increasing the osmotic fragility of erythrocytes in equine and bovine blood samples (Arrigo et al., 2023). It has also been associated with genotoxic and cytotoxic effects on bovine whole blood cells, inducing DNA damage, chromosomal aberrations, sister chromatid exchanges, and micronucleus formation (Galdíková et al.; 2015; Galdíková et al., 2022). Additionally, THI interacts with calf thymus DNA, altering its structure and stability through direct binding (Verebová et al., 2019). 

Within the toxicopathological context, several medicinal plants are recognized for their cytoprotective properties, thereby possessing the potential to prevent or ameliorate various pathological aspects induced by insecticides and other environmental pollutants. These plants are conventionally employed in traditional medicine as whole plants or in the form of extracts. Bitter apricot kernels (Prunus armeniaca L.) are known to possess several traditional medicinal properties, including those related to pulmonary health, digestive regulation, and trauma management (Al-Juhaimi et al., 2021). These kernels are notably rich in monounsaturated fatty acids, vitamin E, carotenoids and amygdalin, rendering them a valuable source of bioactive compounds (Al-Juhaimi et al., 2018). Moreover, bitter apricot kernels extract has demonstrated neuroprotective potential against thiacloprid-induced toxicity, by restoring mitochondrial redox homeostasis, preventing cognitive impairment, and mitigating brain tissue damage (Djellal et al., 2022). 

Building on these preliminary findings that highlight the potential involvement of thiacloprid and bitter apricot kernels in mammalian health, the present study aimed to contribute to the assessment of thiacloprid's toxic effects particularly on the hematopoietic and immune systems, in rats exposed during the gestational and lactational windows. Concurrently, this search seeks to valuate the cytoprotective effect of the hydroalcoholic extract derived from bitter almonds of the apricot kernels against these documented toxicities. 

3 MATERIAL AND METHODS 

3.1 Harvesting, Drying of Plant Material and Extraction

The study utilized bitter almonds obtained from apricot (Prunus armeniaca L.) harvested in Ain-Elkhadra, M'sila, Algeria, between May and July 2022. Upon collection, the kernels were meticulously extracted, subsequently crushed, dried, and then ground into a fine powder. The extraction process was conducted in accordance with the method described by Minaiyan et al. (2014), which involved a 72-hour maceration period in aqueous ethanol. Following maceration, the mixture was filtered, and the filtrate was subjected to drying at 40°C to obtain the dry hydroalcoholic extract. The resulting residue was stored at 4°C for subsequent use.

3.2 Animal Husbandry

Wistar albino rats were procured from the Pasteur Institute in Algiers. Upon arrival, the animals underwent a two-week acclimatization period. Throughout the study, rats were maintained under standard laboratory conditions, with ad libitum access to food and water. Environmental controls included a controlled ambient temperature of 22±2∘C, a relative humidity of 50±10%, and a 12-hour light/dark cycle. 

3.3 Chemical Agent, Extract Dose, and Animal Treatment Protocol

The study employed thiacloprid, a commercial-grade pesticide, for the experimental treatment of rats. The selected dose of THI was 0.020 mg/kg/day, determined based on its documented presence in biological matrices such as fresh tomatoes (Omirou et al., 2009). This environmental concentration was converted to a daily dose for rats using a conversion factor of 0.05 (EFSA, 2011). A hydroalcoholic extract of bitter apricot kernels, at a dose of 50 mg/kg/day, was administered as a putative preventive treatment against thiacloprid toxicity (Kovacova et al., 2020). 

Following the 15-day acclimatization period, nulliparous female Wistar rats were mated with males (two females per male, overnight). The following morning, vaginal smears were microscopically examined to confirm evidence of gestation. This day was designated as gestational day 0. Pregnant rats were randomly assigned to one of four experimental groups: 

· Control (CON) Group: Received distilled water orally throughout the gestation and lactation periods.

· Thiacloprid (THI) Group: Received 0.020 mg/kg/day of THI orally throughout the gestation and lactation periods.

· Extract (EXT) Group: Received 50 mg/kg/day of the hydroalcoholic extract of bitter apricot kernels orally throughout the gestation and lactation periods.

· Thiacloprid + Extract (THI+EXT) Group: Received concurrent oral administrations of 0.020 mg/kg/day of THI and 50 mg/kg/day of the hydroalcoholic extract throughout the gestation and lactation periods.

3.4 Evaluation of First-Generation (G1) Offspring

The study focused on evaluating the hematotoxicity of thiacloprid (THI) and the preventive effect of bitter almond extract from apricot kernels in first-generation (G1) adult male and female rats. At the conclusion of the experimental period, the G1 rats were sacrificed, and blood samples were collected for biochemical and hematological analyses. These analyses included a complete blood count (CBC), preparation and examination of blood smear, determination of reticulocyte count, measurement of prothrombin time (PT), activated partial thromboplastin time (aPPT), and fibrinogen levels. Additionally, histological examination of thymic tissue was performed to assess structural integrity.  All specified parameters were evaluated using SPINREACT spectrophotometric reagent kits and automated analytical equipment. The experimental protocols adhered strictly to ethical guidelines and received approval from the committee of the ‘’Algerian Association of Sciences in Animal Experimentation’’ under law No.88-08/1988, related to veterinary medical activities and animal health protection (N° JORA:004/1988).

Complete Blood Count (CBC)

The Complete Blood Count (CBC) was performed to ascertain the quantitative and qualitative composition of blood cellular components. Blood samples from G1 rats were collected into hematocrit capillaries and EDTA-anticoagulated tubes. To ensure accuracy, cytological and platelet count analyses were conducted within two hours of blood collection. Specialized automated devices were utilized to enumerate various blood cell types based on their specific characteristics (Diakite et al., 2017).

Blood Smear Examination

The blood smear examination involved microscopic visualization of blood cellular elements (Cloutier et al., 2014). A small blood sample obtained from orbital sinus of each rat was transferred to an EDTA-anticoagulated tube. A single drop of whole blood was then placed on a microscope slide, uniformly spread via capillary action, and air-dried. The prepared smear was then stained with May-Grünwald Giemsa (MGG) stain and examined under a light microscope (Piaton et al., 2015). Interpretation takes into account cell size, shape, appearance, hemoglobin content, and white blood cell types and percentages (Ghosh et al., 2016).

Reticulocyte Count

Reticulocytes represent immature erythrocytes released into the bloodstream from the bone marrow following erythropoiesis (Cowgill et al., 2003). The reticulocyte identification is based on the presence of residual ribosomal RNA, which appears as bright blue filaments and granulations upon supravital staining. For analysis, whole blood was mixed with a specific reticulocyte dye, allowed to stand for 15 minutes, and then used to prepare a blood smear. The reticulocyte count was performed by enumerating reticulocytes among 500 red blood cells, as described by Bellier & Cordonnier (2010). 

Prothrombin Time (PT)

Prothrombin time (PT) is a crucial essay employed to measure the extrinsic pathway of blood coagulation and identify deficiencies in extrinsic coagulation factors (Hafian et al., 2003). This assay measures the time required for clot formation after the addition of thromboplastin—a tissue extract rich in tissue factor, phospholipids, and calcium—to platelet-poor plasma. Coagulation is initiated by the activation of Factor VII by tissue factor. The results of the Quick time were expressed in seconds relative to a control (Ref. 1709222. SPINREACT, 2015).

International Normalized Ratio (INR) 

The International Normalized Ratio (INR) serves as a standardized measure for PT results, particularly relevant for comparative purposes across different laboratories. The INR was calculated as the ratio between the prothrombin time of the treated rat and that of the control group, utilizing the following formula by Laoudy et al. (2016): 

 



Kaolin Partial Thromboplastin Time (KPTT)

The Kaolin Partial Thromboplastin Time (KPTT) measures the clotting time of recalcified platelet-poor plasma in the presence of phospholipids (cephalin) and an activator, kaolin (Ignjatovic, 2013). This assay is employed to assess the integrity of intrinsic pathway of plasma coagulation and its results are expressed in seconds (Crighton, 2013).

Fibrinogen Measurement

Fibrinogen, a pivotal protein present in blood plasma and synthesized by the liver, is determined by the thrombin clotting time, which is inversely proportional to the concentration of fibrinogen within the plasma sample (Stang & Mitchell, 2013).

3.5 Histological study 

Histological processing of thymic tissue involved a sequence of standard laboratory procedures: fixation, dehydration, clarification, paraffin baths, and mold creation. Initially, the excised thymus tissue was immersed in 10% neutral buffered formalin for an appropriate fixation period. Subsequently, samples underwent dehydration through a graded series of ethanol solutions, followed by clarification in xylene baths. The processed samples were then placed in molten paraffin wax baths for one hour each to ensure complete infiltration, prior to being cast into metal molds to form tissue blocks. Blocks containing the embedded tissue fragments were then sectioned at a thickness of 7 µm using a microtome. The resulting sections were mounted on glass slides, dewaxed, rehydrated, and stained. After staining, the slides were air-dried and permanently mounted with a coverslip. The stained slides were subsequently photographed using a digital camera affixed to a light microscope (Houlot, 1984).  

3.6 Statistical study 

All quantitative results are presented as a mean ± standard deviation. Statistical analysis was performed using XLSTAT 2014.5.03 software. The significance of the differences between the control group and treated groups was assessed using a one-factor Analysis of Variance (ANOVA), followed by Tukey’s honestly significant difference (HSD) post-hoc test for multiple comparisons. Statistical significance was interpreted as follows: 

· ns: p > 0.05, indicating a non-significant difference; 

· *: 0.01 < p ≤ 0.05, indicating a significant difference; 

· **: 0.001 < p ≤ 0.01, indicating a highly significant difference; 

· ***: p ≤ 0.001, indicating a very highly significant difference compared to the control group. 

Additionally, comparisons specifically against the thiacloprid (THI) group were denoted using the following alpha levels: #p < 0.05, ##p < 0.01, and ###p < 0.001. To illustrate these results, graphs and histograms were generated using Microsoft Office Excel 2016.

4 RESULTS AND DISCUSSION 

The methodological strategy of this study employed a pre- and postnatal exposure window, designed to highlight the susceptibility of offspring to the potential gestational and lactational transmission of thiacloprid (THI)-induced hematotoxicity. Human prenatal and postnatal exposure to environmental pollutants, including pesticides, has been associated with adverse developmental outcomes and the increased incidence of various adult-onset diseases (Gomez et al., 2020). THI, one of the most widely utilized neonicotinoid insecticides globally, functions as an agonist of nicotinic acetylcholine receptors (nAChRs), identical to nicotine. Consequently, it possesses the potential to exert toxic effects on rat offspring (Kammoun et al., 2019).[bookmark: Table1]Table 1. Values of the different parameters of the red line of male control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT) of G1

Parameters 

Groups



GR

1012/L

MCV

(fl)

HGB

g/dl

HCT

%

CON



8.69 ± 0.90

43.44 ± 1.49

15.51 ± 0.49

38.81 ± 2.21

THI



5.41 ± 0.48 *

69.94 ± 3.98 *

9.59 ± 1.50 *

56.06 ± 4.82 *

EXT



8.18 ± 0.59 ns

44.30 ± 2.81 ns

14.12 ± 1.03 ns

41.96 ± 1.18 ##

THI+EXT

8.19 ± 0.61 ns

45.21 ± 2.13 ns

14.64 ± 1.30 *

42.02 ± 1.34 ##

Note: Values are means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not significant groups compared to control group, #р ≤ 0.05: significant; ##р ≤ 0.001: highly significant groups compared to Thiacloprid group. GR: Red blood cell; MCV: mean corpuscular volume; HGB: hemoglobin; HCT: hematocrit.

[bookmark: Table2]



Several investigations underscore a significant correlation between pregnant women's exposure to certain agricultural pesticides and the subsequent physiological impairments observed in their fetuses (Zamora et al., 2022; Albadrani et al., 2024). Within this context, exposure to thiacloprid during critical developmental periods, such as gestation and lactation may induce significant alterations in hematological profiles, immune responses, and hemostatic parameters, particularly in mammalian systems. Despite these concerns, scientific research on this specific interaction remains limited. Therefore, this study aimed to investigate the potential hematotoxic effects of THI and its impact on key physiological systems, thereby contributing to a better understanding of its risks.

4.1 Complete Blood Count (CBC)

Erythroid Lineage

Our findings, detailed in Table 1 and 2, demonstrate significant alterations within the erythroid lineage in first-generation (G1) rats exposed to thiacloprid. Specifically, there was a significant decrease (p < 0.05) in both the red blood cell (RBC) count and hemoglobin (HGB) level in THI-treated male and female G1 rats compared to the control group. Concurrently, a significant increase was observed in mean corpuscular volume (MCV) and hematocrit (HCT) level. These results suggest that thiacloprid exposure, via pre- and postnatal maternal transmission, induces notable effects on erythropoiesis, potentially indicative of an anemic state characterized by larger, but fewer, red blood cells.

Conversely, in male G1 rats, treatment with the apricot kernel extract (EXT) and the combined THI+EXT group demonstrated a highly significant decrease in HCT compared to the THI group (p < 0.01 for specific comparisons). In female G1 rats, the EXT and THI+EXT groups exhibited a significant increase in RBC count and HGB (p < 0.05 for specific comparisons) and a decrease in MCV and HCT when compared to the THI group.  These observations indicate a protective and ameliorative effect of the apricot kernel extract against THI-induced erythroid toxicity, with gender-specific nuances in the restorative patterns. Our findings align with previous research; for instance, Chachoui et al. (2022) reported a significant decrease in HCT and hemoglobin concentration in animals following daily thiacloprid administration at a dose of 1 mg/kg/day for 90 consecutive days. Similar variations in hematological parameters were also reported by Kataria et al. (2016) after imidacloprid (another neonicotinoid insecticide) treatment, albeit over a shorter, 24-hour exposure period.[image: ]

[bookmark: Figure1]Figure 1. variation in white blood cell count of male and female control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT)

Values expressed as means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not significant groups compared to control group.

Table 2. Values of the different parameters of the red line of female control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT) of G1

Parameters 

Groups

GR

1012/L

MCV

(fl)

HGB

g/dl

HCT

%

CON



6.84 ± 0.36

49.78 ± 1.43

15.51 ± 1.15

43.80 ± 1.27

THI



5.11 ± 1.10 *

72.00 ± 3.74 *

9 .89 ± 0.44 *

56.18 ± 3.49 **

EXT



6.91 ± 0.71 ns

50.72 ± 1.83 ns

16.04 ± 1.54 #

42.17 ± 1.26 ##

THI+EXT

8.21 ± 0.25 #

51.52 ± 1.03 #

15.75 ± 1.15 #

44.67 ± 0.64 ###

Note: Values are means ± SD, (n= 7); *р ≤ 0.05: significant; **р ≤ 0.01: highly significant; ns p > 0.05: not significant groups compared to control group, #р ≤ 0.05: significant; ##р ≤ 0.001: highly significant; ###р ≤ 0.001: very highly significant groups compared to Thiacloprid group. GR: Red blood cell; MCV: mean corpuscular volume; HGB: hemoglobin; HCT: hematocrit.



Leukocyte Lineage

The results of this study reveal a significant increase (p < 0.05) in the white blood cell (WBC) count in both male and female G1 rats treated with thiacloprid, relative to the control group (Figure 1). This observed increase leukocytosis could be attributed to an acute immune response triggered by pesticide toxicity, internal bleeding, or indeed, direct effects on bone marrow function and/or the pituitary-adrenal axis (Chachoui et al., 2022). A comparable increase in leukocyte counts has been observed in laboratory animals following prolonged administration of other insecticides, suggesting a common mechanism by which thiacloprid may induce similar systemic inflammatory or stress responses (Singla & Sandhu, 2015). 

Platelets 

Data from this study demonstrate a highly significant increase (p < 0.01) in blood platelet count in male and female G1 rats exposed to thiacloprid when compared to the control group. Conversely, the groups treated with EXT and the combined THI+EXT intervention exhibited a highly significant decrease in platelet count relative to the THI-exposed group (Figure 2). This finding suggests that THI exposure may confer a risk of thrombosis through the promotion of platelet aggregation. This observation is corroborated by the work of Chakroun et al. (2016), who reported a significant increase in platelet count on rats treated with various doses of acetamiprid (10.85 - 21.7 - 43.4 mg/kg) for 60 days. 

Lymphocytes 

Analyses of blood lymphocyte counts revealed a significant increase in the number of lymphocytes in both male and female G1 rats treated with thiacloprid, compared to the control group. In addition, a significant decrease in lymphocytes counts in female rats treated with the apricot kernel extract (EXT group), when compared to the thiacloprid-only group (Figure 3). These results collectively suggest that thiacloprid may induce modulation of white blood cell populations, including lymphocytes, likely as an immune system response to pesticide-induced toxicity. This observation implies an activation of the immune system in an attempt to counteract the deleterious effects of thiacloprid (Gavel et al., 2019). Similar results have been reported following prolonged thiacloprid administration, as reported by (Aydin, 2011).

4.2 Blood Smear Evaluation

The results from the blood smear evaluation across the various experimental groups (THI, EXT, EXT + THI+EXT, and control groups (CON) are summarized in Tables 3 and 4. 



[bookmark: Table3]Table 3. Percentage values of different cells obtained by blood smear analysis of male control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT)

Cells 

Groups



PN (%)

PB (%)

PE (%)

Mono

Abnormal cells

CON

7.76 ± 0.74

0.77 ± 0.16

0.24 ± 0.053

21.73 ± 0.85

0.00 ± 0.00

THI

17.86 ± 2.19*

4.57 ± 1.61**

1.71 ± 0.75 **

30.14 ± 1.76 *

3.86 ± 2.11*

EXT

8.57 ± 0.79#

0.88 ± 0.14##

0.12 ± 0.04 ##

20.41 ± 1.03 ns

0.00 ± 0.00#

THI+EXT

10.43 ± 0.97#

0.97 ± 0.05 ###

0.48 ± 0.13 ##

21.85 ± 1.06 ns

0.00 ± 0.00 #



Note: Values are means ± SD, (n= 7); *р ≤ 0.05: significant; **р ≤ 0.01: highly significant; ***р ≤ 0.001: very highly significant; ns p > 0.05: not significant groups compared to control group, #р ≤ 0.05: significant; ##р ≤ 0.001: highly significant; ###р ≤ 0.001: very highly significant groups compared to Thiacloprid group. Mono: monocyte cells, PN: neutrophils, PB: polynuclear basophils, PE: eosinophils.















In male G1 rats treated with THI, a significant increase was observed in the number of neutrophils (PN), monocytes, and atypical cells. A highly significant increase was also noted in basophils (PB) and eosinophils (PE) when compared to the control group. In contrast, the EXT and THI+EXT in male rats demonstrated a significant decrease in PN, PB, PE and atypical cells compared to the THI group. [image: ]

[bookmark: Figure3]Figure 3. variation in lymphocytes count of male control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT)

Values are means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not significant groups compared to control group, #р ≤ 0.05: significant groups compared to thiacloprid group.
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[bookmark: Figure2]Figure 2. Variation of platelets of male and female control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT)

Values are means ± SD, (n= 7); **р ≤ 0.01: highly significant compared to control group, #р ≤ 0.05: significant, ##р ≤ 0.001: highly significant groups compared to Thiacloprid group.



For female Generation 1 rats exposed to THI, a significant increase was recorded in PB and monocytes, coupled with a highly significant increase in PN and atypical cells. Conversely, the EXT and THI+EXT groups in female rats exhibited a significant decrease in PB and PN, a highly significant decrease in monocytes and atypical cells, and a very highly significant decrease in PE when compared to the THI group (Figure 4).















[bookmark: Table4]Table 4. Percentage values of different cells obtained by blood smear analysis of female control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT)

Cells 

Groups



PN (%)

PB (%)

PE (%)

Mono

Abnormal cells

CON

9.6 ± 0.35

1.31 ± 0.39

0.18 ± 0.07

20.15 ± 1.04

0.00 ± 0.00

THI

18.70 ± 1.09 **

5.71 ± 1.11 *

1.57 ± 0.53 ***

27.57 ± 2.44 *

3.71 ± 1.38 **

EXT

9.37 ± 0.60 #

1.09 ± 0.47 #

0.12 ± 0.04 ###

20.85 ± 0.89 ##

0.00 ± 0.00 ##

THI+EXT

11.57 ± 0.53 #

1.71 ± 0.75 ns

0.30 ± 0.09 ###

21.85 ± 1.06 #

0.00 ± 0.00 ##



Note: Values are means ± SD, (n= 7); *р ≤ 0.05: significant; **р ≤ 0.01: highly significant; ***р ≤ 0.001: very highly significant; ns p > 0.05: not significant groups compared to control group, #р ≤ 0.05: significant; ##р ≤ 0.001: highly significant; ###р ≤ 0.001: very highly significant groups compared to Thiacloprid group. Mono: monocyte cells, PN: neutrophils, PB: polynuclear basophils, PE: eosinophils.
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[bookmark: Figure4]

Figure 4. Blood smears from the different groups of males(M) and Female (F) rats 

(CON: control; EXT: extract; THI: Thiacloprid; THI+EXT: Thiacloprid + Extract).1: red blood cells; 2: platelets; 3: lymphocyte; 4: eosinophil; 5: neutrophil; 6: monocyte; 7: basophil.
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[bookmark: Figure45]

Figure 5. Reticulocytes from the different groups of males (M) and females (F) rats 

(CON: control; EXT: extract; THI: Thiacloprid; THI+EXT: Thiacloprid + Extract). 1: reticulocytes; 2: platelet aggregate; 3: abnormal cell.







These findings align with those reported by Chelly et al. (2019), who observed similar alterations in rats with acetamiprid (20 mg/kg for 21 days). Such changes in leukocyte populations suggest that neonicotinoids exposure may induce an inflammatory response, possibly due to tissue necrosis, thereby activating the immune system. Similar ameliorative effects exerted by plant extracts were reported by Omer et al. (2020). 

4.3 Reticulocyte levels 

[bookmark: _Toc113275540][bookmark: _Toc98237720]The results of this study indicated a significant increase in reticulocytes levels in both male and female Generation 1 rats treated with THI compared to the control group. Furthermore, a significant decrease in reticulocyte levels was observed in male rats treated with extract (EXT) when compared to the THI group (Figures 5 and 6). This elevation in reticulocytes in THI-exposed animals can be attributed to a compensatory hyperfunction of the bone marrow, which responds to the observed loss of hemoglobin and red blood cells by increasing the production of reticulocytes (Chelly et al., 2019).[image: ]

[bookmark: Figure7]Figure 7. Variation of prothrombin of male and female control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT). 

Values are means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not significant groups compared to control group. #р ≤ 0.05: significant groups compared to Thiacloprid group.
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[bookmark: Figure6]Figure 6. Variation in reticulocyte count of male and female control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT). 

Values are means ± SD, (n= 7); *р ≤ 0.05: significant; ns p > 0.05: not significant groups compared to control group, #р ≤ 0.05: significant groups compared to Thiacloprid group.



4.4 Prothrombin level (PT) 

The current study revealed a significant increase in prothrombin time (PT) in both male and female Generation 1 rats treated with (THI) compared to the control group. In contrast, male rats in the THI+EXT group exhibited a significant decrease in prothrombin time relative to the THI group (see Figure 7). This assay assesses the extrinsic and common pathways of the coagulation cascade. Prior research has indicated that thiacloprid exposure can prolong prothrombin time, indicating impaired clotting ability. Such prolongation may signify a deficiency in coagulation factors such as Factor I (fibrinogen), Factor II (prothrombin), Factor V, Factor VII or Factor X. To the best of our knowledge, an extensive review of various bibliographic databases did not yield studies specifically investigating the effect of thiacloprid and hydroalcoholic extract of bitter apricot kernels on hemostasis parameters. However, the rich content of phenolic compounds and amygdalin in the apricot kernel extract may confer its observed preventive effect against this insecticide’s toxicity (Moradi et al., 2017).

4.5 International Normalized Ratio (INR) 

Our results demonstrated a significant and highly significant decrease in INR in both male and female Generation 1 rats treated with thiacloprid respectively when compared to the control group, while the EXT and THI+EXT groups displayed a significant improvement in INR when compared to the THI group (Figure 8). While INR is a standardized indicator of blood clotting, there is currently no established evidence directly linking thiacloprid to INR variations in the existing literature. This highlights a gap in scientific research concerning the impact of this insecticide on human health, particularly regarding blood coagulation.





4.6 Kaolin Partial Thromboplastin Time (KPTT)[image: ]
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Figure 8. Variation of International Normalized Ratio of male control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT). 

Values are means ± SD, (n= 7); *р ≤ 0.05: significant, ***р ≤ 0.001:  very highly significant groups compared to control group. #р ≤ 0.05: significant, ##р ≤ 0.001: highly significant, ###р ≤ 0.001: very highly significant groups compared to Thiacloprid group.
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Figure 10. Variation of Fibrinogen of male and female control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT).

Values are means ± SD, (n= 7); ns p > 0.05: not significant; *р ≤ 0.05: significant, **р ≤ 0.01: highly significant groups compared to control group, #р ≤ 0.05: significant groups compared to Thiacloprid group.
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Figure 9. Variation of kaolin partial thromboplastin time of male control rats and treaties with thiacloprid (THI), Extract (EXT), and the combination (THI+EXT). 

Values are means ± SD, (n= 7); ns p > 0.05: not significant; *р ≤ 0.05: significant group compared to control group, #р ≤ 0.05: significant, ##р ≤ 0.01: highly significant groups compared to Thiacloprid group.



The study also reported a significant increase in the level of KPTT in both male and female Generation 1 rats treated with THI compared to the control group. In contrast, a significant and very highly significant decrease in this parameter was noted in male and female rats, respectively, treated with the extract (EXT) when compared to the THI group (Figure 9). KPTT is an essential test employed to assess the intrinsic and the common pathways of coagulation. One study by Abdel Ghaffar et al. (2016), reported that thiacloprid exposure was associated with prolongation of KCT, which may indicate abnormalities in coagulation factors such as factors VIII, IX, XI and XII.

4.7 Fibrinogen 

Regarding the fibrinogen assay, our results highlighted a significant increase in fibrinogen concentration in THI-treated male and female Generation 1 rats compared with the CON group, with no significant variation was observed in the other treated groups (Figure 10). These findings suggest that thiacloprid exposure may influence blood fibrinogen levels; however, specific data on this interaction remain limited. Such disturbances in fibrinogen synthesis can predispose to coagulation disorders; however, dedicated studies focusing on THI and fibrinogen levels following gestational and lactational exposure are necessary to draw definitive conclusions (Chachoui et al., 2022).





4.8 Observation of Histological Changes in Thymus Tissue [image: ]
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Figure 11. Histology of Female (F) rat thymus, of different groups of rats 

(CON, THI, EXT, THI+EXT). Tissues coloration was performed using a combination of two dyes, hematoxylin and eosin. The Arrow indicates necrosis of thymus cells, and the circle indicates apoptotic cells (C: Cortex; Me: Medulla).



Figures 9 and 10 illustrate the microscopic analysis of thymic tissue sections obtained from male and female rats subjected to different treatments during gestation and lactation. The control and extract-treated groups exhibited a well-preserved thymic parenchyma, encapsulated by a thin fibrous capsule that extended the septa to delineate the lobules. Each lobule comprised a distinct medulla, characterized by sparsely distributed lymphocytes, blood vessels, and epithelial cells forming Hassall’s corpuscles, whereas the peripheral cortex was densely populated with small lymphocytes. 

Conversely, the thymic parenchyma of rats exposed to THI exhibited pronounced histopathological alterations, including extensive necrotic foci, abundant apoptotic bodies, and notable fat involution. In addition, hemorrhagic lesions were evident in the thymic tissue of both male and female THI-exposed rats. Notably, no significant anatomo-histological variations were observed in the thymic sections of the THI+EXT group, indicating a potential protective effect of the extract against THI-induced thymic damage.

Leboffe et al. (2020) determined that the acceptable daily intake of THI is 0.03 g/kg BW/day. Research indicates that THI exposure may induce oxidative stress within thymic cells, resulting in increased levels of reactive oxygen species (ROS). Oxidative stress is well-established as a key mediator in apoptosis and cellular damage, operating by disrupting essential cellular components and initiating programmed cell death through procaspase activation (Akash et al., 2020).[image: ]
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Figure 12. Histology of male (M) rat thymus, of different groups of rats 

(CON, THI, EXT, THI+EXT). Tissues coloration was performed using a combination of two dyes, hematoxylin and eosin. The Arrow indicates necrosis of thymus cells, and the circle indicates Hemorrhages tissue (C: Cortex; Me: Medulla).



Microscopic examination of thymic tissue from THI-exposed rats revealed severe histopathological damage, characterized by the complete destruction of the thymic parenchyma, alongside the presence of necrotic foci and apoptotic bodies. In contrast, the thymic structure in the EXT-treated groups remained intact, exhibiting no significant histological abnormalities, suggesting a potential protective role of the extract against THI-induced toxicity. This cyto-protective and preventive potential is likely attributable to the presence of phenolic compounds, well-known for their antioxidants and antiradicals properties (Moradi et al., 2017).

Comparable structural damage to thymic tissue has been previously documented following short-term exposure to high doses of THI (e.g., 1.5, 2, 3.5, …… 60 mg/kg), resulting in pronounced tissue degeneration (Abou-Zeid et al., 2021; Şekeroğlu et al., 2020). Given the essential role of the thymus in immune regulation, such alterations could exert profound effects on immune function, potentially compromising immune responses and increasing susceptibility to inflammation and disease. This may also account for the observed changes in lymphocyte populations in THI-exposed rats within the present study.

The apricot kernel extract (EXT) has demonstrated cytoprotective effects on both the hematopoietic and immune systems, primarily attributed to its rich composition of bioactive compounds, such as phenolic compounds (Okada et al., 2013). Recent studies by Qin et al. (2019) have provided strong evidence that polyphenols play a crucial role in mitigating oxidative stress-related pathologies by enhancing endogenous antioxidant defense mechanisms, reducing cellular toxicity and preserving cellular integrity. This pharmacological efficacy can be attributed to the rich antioxidant composition of bitter apricot kernels, which contain essential constituents such as iron, potassium, amygdalin, and flavonoids. These bioactive compounds collectively exhibit a broad spectrum of biological activities, including antioxidants, anti-inflammatory, and antitumor effects (Li et al., 2016). Furthermore, bitter apricot kernel extract constitutes a valuable source of magnesium, polyphenols and carotenoids, which contribute to its antioxidant, anticancer, anti-asthmatic, and anti-inflammatory properties (Moradi et al., 2017; Kopčeková et al., 2017; and Kovacikova et al., 2019).

In summary, although bitter apricot kernels have unveiled beneficial effects on hematopoietic and immune functions, as demonstrated by Kovacikova et al. (2019), in a 14-day treatment study in rabbits at various doses, their consumption should be carefully monitored due to the presence of potentially toxic compounds.

4.9 Limitations of the study 

The present investigation, while yielding valuable insights into the hematopoietic and immune toxicity induced by maternal exposure to thiacloprid during gestation and lactation in first-generation (G1) rats, as well as the potential protective effects of bitter apricot kernel extract, is subject to several inherent limitations that warrant acknowledgment.

Selection Bias: A potential limitation of this study resides in the possibility of selection bias. The selection of experimental animals and the allocation to treatment groups may not have been entirely randomized, this could compromise the external validity of the findings, thereby affecting their generalizability. Future studies should aim to prioritize the minimization of selection bias by employing more rigorous randomization methodologies and by ensuring a more diverse and representative sample.

Confounding Variables: Potential confounding variables include factors such as the genetic variability among the rats, prevailing environmental conditions (e.g., temperature and humidity), and variations in the standardized diet provided to the subjects. These factors possess the capacity to exert an independent influence on the observed outcomes related to the hematopoietic and immune systems, distinct from the effects of thiacloprid exposure or bitter almond of apricot kernel extract treatment. Subsequent studies should aim to control these variables more rigorously to isolate the effects of pesticide and protective intervention.

Limited Follow-Up Period: The duration of follow-up period in this study was limited to gestation and lactation. This relatively short timeframe may not fully capture the long-term effects of thiacloprid exposure or the sustained protective potential of bitter apricot kernel extract on the hematopoietic and immune systems. Such a limited timeframe prevents the assessment of chronic outcomes that may occur later in life. Future research should incorporate extended follow-up periods to evaluate the prolonged impacts and the enduring efficacy of the protective intervention. 

Statistical Power: The statistical power of this study may be constrained by the relatively small sample size and the inherent biological variability observed within the experimental groups. A more modest sample size can reduce the capacity to detect significant differences or biological effects, especially when dealing with nuanced physiological variations.

5 CONCLUSIONS

In conclusion, this study unequivocally highlights the toxicological effects of thiacloprid on both the hematopoietic system and the immune system following exposure during critical gestational and lactational periods. Concurrently, the findings offer promising evidence of the preventive efficacy of the hydroalcoholic extract derived from bitter almond apricot kernels against these adverse systemic effects. The obtained results underline the critical imperative for continued research to deepen the understanding and minimize the adverse effects of pesticides on offspring health and development.
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